+ o+ + 4+t + o+ + 4+t

+H#++ HHH+E A FHE R A TH o+ #
+#+ +#+ +H#H+ +H+ +H+ +H+

H+# H+# #+# H+# #+# H+# #+#
HHHHHHHRH HHHHHH#H #HHH Hitt HitH

http:// bl acksun. box. sk

Topi c:
Sk00l nB ASM !

I I
I I
\ E-mail : I I Witten by: /
I I
I I

/ fu@kz.org Ral ph \

Sk00l nB ASM ! #@! @

by Ral ph (fu@kz. org)

-AWC (http://awc.rejects. net)
Version: 0.841
Date: 7/23/00

NOTE: This thing is alnbst done, just gotta finish of the Wn32 section, however |
started working on other shit so finishing this is kinda 10th on ny priority
list. |If you think you can convince me to finish it sooner, feel free to
contact ne.

TOC

1. Introduction
-What is it?
-Way learn it?
-What will this tutorial teach you?

2. Menory
- Number Systens
- Deci nmal
-Bi nary
- Hexadeci ma
-Bits, Nybbles, Bytes, Wrds, Double Wrds
- The Stack
- Segnent : O f set
-Regi sters

3. Getting started
-Getting an assenbl er
- Program | ayout
-. CoMm
-. EXE

4. Basic ASM
-Basi ¢ Regi ster operations
-Stack operations
-Arithnetic operations
-Bit wise operation
-Interrupts

5. Tools

- Debug
- CodeVi ew

6. Mdre basics
-.COMfile format
-Fl ow control operations
-Loops
-Vari abl es
-Arrays
-String Operations
- Sub- Pr ocedur es
-User I nput

7. Basics of Gaphics
-Using interrupts
-Witing directly to the VRAM
-A line drawi ng program

8. Basics of File Operations
-Fil e Handl es
-Reading files
-Creating files
-Search operations

9. Basics of Wn32
-l ntroduction
-Tool s
- A Message Box
-A W ndow

Appendi x A
- Resour ces

Appendi x B
-Credits, Contact information, Oher shit

1. Introduction

Assenbly | anguage is a | owlevel programm ng | anguage. The syntax is nothing like
C/ C++, Pascal, Basic, or anything el se you m ght be used to.

Wy learn it?

If you ask soneone these days what the advantage of assenbly is, they will tell you it's

speed. That might have been true in the days of BASIC or Pascal, but today a C C++

program conpiled with an optim zed conpiler is as fast, or even faster than the sane
algorithmin assenbly. According to many people assenbly is dead. So why bot her
learning it?

1. Learning assenbly will help you better understand just how a conputer works.

2. If windows crashes, it usually returns the |ocation/action that caused the error.
However, it doesn't return it in C/C+t+. Knowi ng assenmbly is the only way to track
down bugs/exploits and fix them

3. How often do you whi sh you could just get rid of that stupid nag screen in that

shareware app you use? Knowi ng a high-level |anguage wont get you very far when you
open the shit up in your deconpiler and see sonething |ike CWP EAX, 7COA

4. Certain low level and hardware situations still require assenbly

5. If you need precise control over what your programis doing, a high |evel |anguage
i s sel dom powerful enough

6. Anyway you put it, even the nost optim zed high | evel |anguage conpiler is stil

just a general conpiler, thus the code it produces is also general/slow code. |If
you have a specific task, it will run faster in optim zed assenbly than in any other
| anguage.

7. "Professional Assenbly Programer" |ooks dam good on a resune.

My personal reason why | think assenbly is the best |anguage is the fact that you're

in control. Yes all you C C++/ Pascal /Perl/etc coders out there, in all your fancy

hi gh | evel |anguages you're still the passenger. The conpiler and the | anguage itself

limt you. |In assenbly you're only limted by the hardware you own. You control the

CPU and nenory, not the otherway around.

What will this tutorial teach you?

| tryed to make this an introduction to assenbly, so |I'mstarting fromthe beginning.
After you've read this you should know enough about assenbly to devel op graphics
routines, nmake sonething |like a sinple database application, accept user input,

make Wn32 GU's, use organi zed and reuseabl e code, know about different data types
and how to use them sonme basic I/O shit, etc.

In this chapter I will ask you to take a whole new | ook at computers. To many they
are just boxes that allow you to get on the net, play ganes, etc. Forget all that
today and think of themas what they really are, Big Calculators. Al a conputer does
is Bit Manipulation. That is, it can turn certain bits on and off. A computer can't
even do all arithnetic operations. Al it can do is add. Subtraction is achieved

by addi ng negative numbers, nultiplication is repeaded adding, and dividing is
repeaded addi ng of negative nunbers.

Nunber systens

Al of you are famliar with at | east one nunber system Decimal. |In this chapter |
will introduce you to 2 nore, Binary and Hexadeci nal .
Deci nal

Before we get into the other 2 systens, lets review the decinal system The deci nal
systemis a base 10 system neaning that it consists of 10 nunbers that are used to make
up all other nunber. These 10 nunbers are 0-9. Lets use the nunber 125 as an exanpl e:

Hundr eds Tens Units
Digit 1 2 5
Meani ng 1x1072 2x107M1 5x1070
Val ue 100 20 5

NOTE: x"y neans x to the power of y. ex. 133 neans 13 to the power of 3 (2197)
Add the val ues up and you get 125

Make sure you understand all this before going on to the binary system

Bi nary

The binary systens | ooks harder than decimal at first, but is infact quite a bit easier
since it's only base 2 (0-1). Renenber that in decinmal you go "value x 10"position"” to
get the real nunber, well in binary you go "value x 2"position"” to get the answer.
Sounds nore conplicated than it is. To better understand this, lets to some converting.

Take the binary nunber 10110:
1 x 274 16

0x2"3=0

1 x 222 =4

1 x 2" =2
0
An

X 270 0
swer . 22

NOTE: for
270
271
272
273
274 16
275 32
etc....

he next exanple | already converted the Ax2"B stuff to the real val ue:
1
2
4
8

|1 T 1 O O I

ets use 111101:
X 32 32
16 16
8 8
4 4
2 0
x 1 1
Answer: 61

L
1
1 x
1 x
1 x
0 x
1

Make up sone binary nunbers and convert themto decinmal to practise this. It is very
i mportant that you completely understand this concept. |If you don't, check Appendix B
for links and read up on this topic BEFORE goi ng on

Now | ets convert decimal to binary, take a | ook at the exanpl e bel ow
238 / 2 remainder: O

119 / 2 remainder: 1
59 [/ 2 remainder: 1
29 [/ 2 remainder: 1
14 / 2 remainder: O
7 / 2 remainder: 1
3 / 2 remainder: 1
1 / 2 remainder: 1
0 / 2 remainder: O

Answer: 11101110

Lets go through this:

1. Divide the original nunber by 2, if it divides evenly the renmainder is O

2. Divide the answer fromthe previous calculation (119) by 2. If it wont
di vide evenly the renmainder is 1.

3. Round the nunber fromthe previous cal culation DOM (59), and divide it by 2
Answer: 29, renminder: 1

4. Repeat until you get to O...

The final answer should be 011101110, notice how the answer given is mssing the 1st 0?

That's because just like in decimal, they have no value and can be onmtted (023 = 23).

Practise this with sone other deci mal numbers, and check it by converting your answer
back to binary. Again nmake sure you get this before going on

A few addi tional things about binary:
* Usually 1 represents TRUE, and 0 FALSE
* When witing binary, keep the nunber in multiples of 4
ex. DONT wite 11001, change it to 00011001, renenber that the 0 in front
are not worth anyt hing
* Usually you add a b after the nunber to signal the fact that it is a binary nunber

ex. 00011001 = 00011001b

Hexadeci nal

Sone of you may have notice sone consistency in things |like RAM for exanple. They seem
to always be a multiple of 4. For exanple, it is comobn to have 128 nmegs of RAM but
you wont find 127 anywhere. That's because conputer like to use nmultiples of 2, 4, 8,
16, 32, 64 etc. That's where hexadecinmal cones in. Since hexadecimal is base 16, it is

perfect for conputers. |f you understood the binary section earlier, you should have
no problens with this one. Look at the table below, and try to nenorize it. It's not
as hard as it |ooks.

Hexadeci nal Deci nal Bi nary

Oh 0 0000b

1lh 1 0001b

2h 2 0010b

3h 3 0011b

4h 4 0100b

5h 5 0101b

6h 6 0110b

7h 7 0111b

8h 8 1000b

9h 9 1001b

Ah 10 1010b

Bh 11 1011b

Ch 12 1100b

Dh 13 1101b

Eh 14 1110b

Fh 15 1111b

NOTE: the h after each hexadeci mal nunber stands for <insert guess here>

Now | ets do some converti ng:
Hexadeci mal to Decima

2A4F

Fx 1670 = 15 x 1 = 15

4 x 16"1 = 4 x 16 = 64
A x 1672 = 10 x 256 = 2560
2 x 16"3 = 2 x 4096 = 8192

Answer: 10831

1. Wite down the hexadeci mal nunber starting fromthe last digit
2. Change each hexadeci mal nunber to decinmal and tinmes them by 16”postion
3. Add all final nunbers up

Confused? Lets do another exanple: DEAD

Dx 1 =13 x 1 = 13
A x 16 = 10 x 16 = 160
E x 256 = 14 x 256 = 3584
D x 4096 = 13 x 4096 = 53248

Answer: 57005
Practise this nethod until you get it, then nove on.

Deci mal to Hexadeci nal
Study the follow ng exanple:

1324
1324 / 16 = 82.75
82 x 16 = 1312

1324 - 1312 12, converted to Hexadecimal: C

82 / 16 = 5.125

5 x 16 = 80

82 - 80 = 2, converted to Hexadecinmal: 2
5/ 16 = 0.3125

0 x 16 =0

5- 0 =05, converted to Hexadecimal: 5
Answer: 52C

I'"d do another exanple, but it's too much of a pain in the ass, maybe sonme other tine.

Learn this section you WLL need it!
This was already one of the hardest parts, the next sections should be a bit easier

Sone additional things abot hexideci nal

1. It's not uncomopn to say "hex" instead of "hexideciml" even thechnicaly speaking
"hex" neans 6, not 16.

2. Keep hexidecimal nunbers in multiples of 4, adding zeros as necessary

3. Most assenblers can't handl e nunbers that start with a "letter" because they don't
know i f you nean a |l abel, instruction, etc. |In that case there are a nunber of
ot her ways you can express the nunber. The nost common are:
DEAD = ODEADh (Usual ly used for DOS/ W n)
and
DEAD = OxDEAD (Usually used for *Ni x based systens)
Consult your assenbler's nmanual to see what it uses.

By the way, does anyone think | should add Cctal to this...?

Bits, N bbles, Bytes, Wrds, Double Wrds

Bits are the smallest unit of data on a conputer. Each bit can only represent 2 nunbers,
1 and 0. Bits are fairly usel ess because they're so damm small so we got the nibble.

A nibble is a collection of 4 bits. That m ght not seemvery interesting, but renenber
how all 16 hexadeci mal nunbers can be represented with a set of 4 binary nunbers?

That's pretty nuch all a nibble is good for

The nost inmportant data structure used by your computer is a Byte. A byte is the
smal l est unit that can be accessed by your processor. It is made up of 8 bits, or

2 nibbles. Everything you store on your hard drive, send with your nmodem etc is in
bytes. For exanple, lets say you store the nunber 170 on your hard drive, it would | ook
I'i ke this:

i i S

| 11 0] 1] 0] 1] 0] 1] 0]

i i S
7 6 5 4 3 2 1 0
H. O N bbl e | L. O Ni bble

10101010 is 170 in binary. Since we can fit 2 nibbles in a byte, we can also refer

to bits 0-3 as the Low Order N bble, and 4-7 as the High Order Nibble

Next we got Words. A word is sinmply 2 bytes, or 16 bits. Say you store 43690, it would
| ook I'ike this:

T S T T ST e T e i
l1joj1jo0f1r]j0l 101020 1]0]1]O0]
T S T T ST e T e i
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o0
H gh Order Byte | Low Order Byte

Again, we can refer to bits 0-7 as Low Order Byte, and 7-15 as Hi gh Order Byte.

Lastly we have a Double Wrd, which is exactly what it says, 2 word, 4 bytes, 8 nibbles
or 32 hits.

NOTE: Oiginally a Wwrd was the size of the BUS fromthe CPU to the RAM Today npst
comput ers have at least a 32bit bus, but npost people were used to
1 word = 16 bits so they decided to keep it that way.

The Stack

You have probably heard about the stack very often. |If you still don't know what it
means, read on. The stack is a very useful Data Structure (anything that holds data).
Think of it as a stack of books. You put one on top of it, and that one will be the

first one to come of next. Putting stuff on the stack is called Pushing, getting stuff
fromthe stack is called Poping. For exanple, say you have 5 books called A, B, C D
and E stack on top of each other |ike this:

w you add (push) book F to the stack:

I'I'IUOUJZDTIgITIUOUJ:D

f you pop the stack, you get book F back and the stack | ooks Iike this again:

mooOw>

This called LIFO Last In, First Cut.
So what good is all this? The stack is extrenely useful as a "scratchpad" to
tenporarily hol d data.

Segnent : O f set

Everyt hing on your conputer is connected through a series of wires called the BUS. The
BUS to the RAMis 16 bits. So when the processor needs to wite to the RAM it does

so by sending the 16 bit location through the bus. |In the old days this neant that
computers could only have 65535 bytes of menory (16 bits = 1111111111111111 = 65535).
That was plenty back than, but today that's not quite enough. So designhers canme up
with a way to send 20 bits over the bus, thus allowing for a total of 1 MB of nenory

In this new design, nmenory is segnmented into a collection of bytes called Segnents,

and can be access by specifying the Ofset nunber within those segnents. So if the
processor wants to access data it first sends the Segnent nunber, followed by the

O fset nunber. For exanple, the processor sends a request of 1234:4321, the RAM woul d
send back the 4321st byte in segnent nunber 1234.

This all mght sound a bit conplicated, but study it carefully and you shoul d be able
to naster segnent: of fset.

The best way to picture seg:off is with a 2 dinensional array. Renenber that X, Y shit
you had to learn in grade 9 math?

Look at the diagrambelow, the * is located at 4:3. The Y-axis is equal to the segnent,
and the X-axis is the offset.

I S

St 1

S e I g
a1 1 =1 | |
Y axis S e I g
I I I I
S e I g
720 I N
S e I g
I I I I
S e I g
1 2 3 4 5
X axi s

w

=

To get the physical address do this cal cul ation:

Segment x 10h + O fset = physical address

For exanple, say you have 1000: 1234 to get the physical address you do:
1000 X 10h = 10000

10000
+ 1234

This nmethod is fairly easy, but also fairly obsolete. Starting fromthe 286 you can
work in Protected Mbde. In this node the CPU uses a Look Up Table to conpute the

seg: off location. That doesn't nean that you cannot use seg x 10h + off though, you
will only be limted to working in Real Mdde and your prograns can't access nore than
1 MB. However by the time you know enough to wite a programeven close to this limt,
you al ready know how to use other nethods (for those comring froma 50 gig hard drive
world, a programthat's 1 MB is about 15x bigger than this text file is).

Regi sters

A processor contains small areas that can store data. They are too small to store
files, instead they are used to store information while the programis running.
The npost common ones are |isted bel ow

General Purpose:

NOTE: AlIl general purpose registers are 16 bit and can be broken up into two 8 bit
registers. For exanple, AX can be broken up into AL and AH. L stands for Low
and H for High. |If you assign a value to AX, AHw |l contain the first part of
that value, and AL the last. For exanple, if you assign the value DEAD to AX,
AH wi Il contain DE and AL contains AD. Likew se the other way around, if you
assign DEto AH and ADto AL, AX will contain DEAD

AX - Accunul at or.

Made up of: AH, AL

Conmon uses: Math operations, |/O operations, INT 21
BX - Base

Made up of: BH, BL

Common uses: Base or Pointer
CX - Counter

Made up of: CH, CL

Conmon uses: Loops and Repeats
DX - Di spl acenent

Made up of: DH, DL

Conmon uses: Various data, character out put

When the 386 cane out it added 4 new registers to that category: EAX, EBX, ECX, and EDX

The E stands for Extended, and that's just what they are, 32bit extensions to the

originals. Take a look at this diagramto better understand how this works:

| EAX |

S
| AH | AL |
S

A

Each box represents 8 hits
NOTE: There is no EAH or EAL

Segment Regi st ers:

NOTE: It is dangerous to play around with these!

CS - Code Segment. The menory bl ock that stores code

DS - Data Segnent. The menory bl ock that stores data

ES - Extra Segment. Conmmonly used for video stuff

SS - Stack Segment. Register used by the processor to store return addresses from
routines

I ndex Regi sters:

SI - Source Index. Used to specify the source of a string/array
DI - Destination Index. Used to specify the destination of a string/array
IP - Instruction Pointer. Can't be changed directly as it stores the address of the

next instruction.

St ack Regi sters:
BP - Base pointer. Used in conjunction with SP for stack operations
SP - Stack Pointer

Speci al Purpose Registers:

IP - Instruction Pointer. Holds the offset of the instruction being executed
Flags - These are a bit different fromall other registers. A flag register is only 1
bit insize. It's either 1 (true), or 0 (false). There are a nunber of flag registers

including the Carry flag, Overflow flag, Parity flag, Direction flag, and nore. You
don't assign numbers to these manually. The value automatically set depending on the
previous instruction. One common use for themis for branching. For exanple, say you
compare the value in BX with the value in CX, if it's the same the flag would be set to
1 (true) and you could use that information to branch of into another area of your
program

There are a few nore registers, but you will nost |ikely never use them anyway.

Exerci ses:

1. Wite down all general purpose registers and nenorize them

2. Make up random numbers and manual |y convert theminto Binary and hexadeci ma
3. Make a 2D graph of the nenory |ocated at 0106: 0100

4. Get the physical address of 107A: 0100

3. Getting Started

Now finally on to real assenmbler! Believe me, I'mgetting sick of all this background
shit :)

Getting an Assenbl er
There are quite a few available these days. Al code in this tutorial has been tested
with TASM so you should have no problens if you have it. A86 should also work with
thise code, but |I can't guarentee that.
AB6 - Available from http://eji.conm a86/i ndex. htm

Li cense: Shareware

Price: A86 only - US$50+Tax/ SH
A86 + Manual + D86 + 32bit version of each - US$80+Tax/ SH
Manual - US$10+Tax/ SH
TASM - Available from http://ww. borl and. conf borl andcpp/ cppconp/tasnfact. htm
Li cense: CGotta buy it
Price: US$129. 95+Tax/SH
There are tons nore out there, check www tucows.com | know they have a few. However as
said before, all progranms in this tutorial have only been tested with TASM |f
you are | ow on cash, just get A86 and evaluate for |onger than you're supposed to.

Program Layout

It is good programm ng practise to develop sone sort of standard by which you wite your
progranms. |In this chapter you will learn about a layout of .COMand .EXE files that is
excepted by both, TASM and A86.

. Com
Lets | ook at the source code to a very sinple program

MAI N SEGVENT
ASSUME CS: MAI N, DS: MAI N, ES: MAI' N, SS: MAI N

ORG 100h

START:

I NT 20
MAI N ENDS
END START

Thi s program does absolutely nothing, but it does it well and fast. Lots of code for
sonet hing that doesn't do shit. Lets exam ne that nore cl osely:

MAI N SEGVENT - Declares a segnment called MAIN. A .COMfile nust fit into 1 segnent of
menory (aka. 65535 bytes - stack - PSP)

ASSUME CS: MAI N, DS: MAI N, ES: MAI N, SS: MAIN - This tells the assenbler the initial values of
the CS, DS, ES, and SS register. Since a .COM
must fit into one segment they all point to the
segnent defined in the |line above.

ORG 100h - Since all .COMfiles start at XXXX: 0100 you declare the entry point to be

100h. More on this later.

START: - A | abel

INT 20 - Returns to DOS

MAI N ENDS - Ends the MAIN segnent
END START - Ends the START | abel

NOTE: This is the kind of |layout we will use nost of the tine. Mybe later (Chapter 9+)
We get into the next one...

Now how do you make this shit into an actual progran? First, type this programout in
your favourite editor (notepad, dos edit, etc). |If you have A86, just get into DCS,
than into the directory A86 is in and type "a86 fil enane.asnm. |If you have TASM

get into DOS and into the tasmdirectory and type "tasmfil ename.asni, then type
"tlink /t filename.obj". |In both cases you will get a file called Fil ename.com Mbre
on what .comis and does |ater.

. EXE
Take a | ook at the followi ng code:

DOSSEG

. MODEL SMALL
. STACK 200h
. DATA

. CODE

START:
I NT 20
END START

Agai n, his program does absolutely nothing. Lets exanine each |ine in detail:

DOSSEG - sorts the segnments in the order:
Code
Dat a
St ack
This is not required, but reconmended while you' re still |earning

. MODEL SMALL - selects the SMALL nenory nodel, avail able nodels are

TI NY: Al'l code and data conbined into one single group called DGROUP. Used for .COM
files.

SVALL: Code is in a single segnent. Al data is conbined in DGROUP. Code and data
are both smaller than 64k. This is the standard for standal one assenbly
progr ans.

MEDI UM Code uses multiple segnents, one per nodule. Al data is conbined in DGROUP
Code can be |arger than 64k, but data has to be snaller than 64k

COWPACT: Code is in a single segnent. Al near data is in DGROUP. Data can be nore
than 64k, but code can't.

LARGE: Code uses nultiple segnents. Al near data is in DGROUP. Data and code can be
nore than 64k, but arrays can't.

HUGE: Code uses nultiple segnents. Al near data is in DGROUP. Data, code and arrays
can be nore than 64k

Most of the tinme you want to use SMALL to keep the code efficient.

. STACK 200h - sets up the stack size. |In this case 200h bytes

. DATA - The data segnent. This is where all your data goes (variables for exanple).
.CODE - The code segnent. This is where your actually program goes.

START: - Just a label, nore on that |ater

INT 20 - exits the program nore on that |ater

END START - Take a wild guess on what this does! Not required for all assenblers,
know TASM needs it, and A86 doesn't.

NOTE: For .EXE files, DON T use the /t switch when |inking!

Exerci ses:
1. Make a programthat uses the LARGE nenory nodel, sets up a 100h |ong stack, and exits
to DOS.

4. Basi ¢ ASM

In this chapter we actually start naking some working code

Basi ¢ Regi ster operations

You al ready know what registers are, but you have yet to learn howto nodify them
To assign a value to a register:

MOV DESTI NATI ON, VALUE

For exanple, say you want AX to equal 56h:

MOV AX, 56h

You can al so use another register as the val ue:

MOV AX, BX

Renmenber how all general purpose registers are nade up of a Hand a L register? Now you
can actually use that info:

MOV AL, 09

Now AL equal s 09 and AX equal s 0009

The next register operator is XCHG which sinply swaps 2 registers. The syntax is:
XCHG REQ STER1, REQ STER2

For exanple, consider the follow ng code:

MOV DX, 56h
MOV AX, 3Fh
XCHG DX, AX

1. DX is equal to 3Fh
2. AX is equal to 56h
3. DX and AX get swapped and AX now equal s 56h, and DX equal s 3Fh

NOTE: NEVER try to exchange a 8 bit (h/l) register with a 16 bit (X)!!
The foll owing code is invalid:
XCHG AH, BX

Next we got 2 sinple operations, |INC and DEC.
INC increnent a register's value and DEC decrenents it.

Exanpl e:

MOV DX, 50h
I NC DX

DX is now equal to 51h (50h + 1h = 51h).
Exanpl e:

MOV DX, 50h
DEC DX

DX is now equal to 4F (50h - 1h = 4Fh).

St ack operations

Now it's time to put that stack shit to some actual use. And it's very easy to. There
are 6 stack operators, 2 of which you will use nost of the tine. The syntax is:

POP REQ STER

PUSH REGQ STER

Lets say you want to tenporarily store the value in AX on the stack for |ater use,

si nply do:

PUSH AX

Now you played around with AX and want to restore the original value:
POP AX

NOTE: The stack will only accept 16 bit registers! That shouldn't be a probl emthough
since the 16 bit registers include the value of the 8 bit.

This next bit of code does sone poping and pushing, take a guess on what BX and AX are
equal to at the end.

MOV AX, 51h
MOV BX, 4Fh

XCHG AX, BX

PUSH AX
MOV AX, 34h

POP BX
PUSH BX
PCOP AX

First AXis equal to 51h and BX to 4Fh, than the 2 get exchanged. Now we got

AX = 4Fh and BX = 51h. AX gets pushed on the stack, then set to 34h:
AX = 34h and BX = 51h. BX gets poped, than pushed:

AX = 34h and BX = 4Fh. Finally AX gets poped. So the final result is:
AX = 4Fh and BX = 4Fh.

Next we got the two variations of the stacks registers, POPF and PUSHF. These two

pl ace the flag register on the stack. Sounds nore conplicated than POP and PUSH, but
it's actually easier. The syntax is:

POPF

PUSHF

No operand is required. For example, say you want AX to hold the current flag register
val ue:

PUSHF
POP AX

PUSHF puts it on the stack, POP AX places it into AX

The last two stack operators are PUSHA and POPA.

PUSHA puts all general purpose registers on the stack

POPA retrieves all general purpose registers fromthe stack

NOTE: These 2 are 32bit instructions, so they only work on a 386+ and will not
work with .COMfiles.

Exanpl e:

MOV AX, 1h
MOV BX, 2h
MOV CX, 3h
MOV DX, 4h

PUSHA

MOV AX, 5h
MOV BX, 6h
MOV CX, 7h
MOV DX, 8h

POPA
At the end of this program all registers are restored to their initial value

Practise some of these instructions! [|f you nmake a program containi ng everything
you've learned so far it won't do anything, but if it doesn't crash it nost likely
wor ked. So code sone sinple prograns and play around with the val ues and registers.

Arithnetic operations

Everyone loves arithnetic. Especially if you do it in hex or binary. For those who
don't know what arithmetic is, it's just adding and subtracting. Miltiplying and
dividing are really just repeated additions and subtractions. So in short, it's a

fancy name for grade 3 math. In this chapter | will introduce you to the 4 basic
arithmetic operators, ADD, SUB, ML, DIV . There are a fewnore that | wll cover
| ater.

Lets start with ADD. The syntax is:
ADD REG STER1, REG STER2
ADD REG STER, VALUE

Exampl e 1:
MOV AX, 5h
MOV BX, 4Fh

ADD AX, BX

This adds AX and BX and stores the resulting value in AX. So after running this
program AX = 9h

Exampl e 2:
MOV AX, 5h

ADD AX, 4Fh
The result is the same as in exanple 1. AX is set to 5h, and 4Fh is added to it.

Now l ets go on to SUB. The syntax is:
SUB REGQ STER1, REG STER2
SUB REGQ STER, VALUE

Exampl e 1:
z
This will subtract the value of BX fromthe value of AX. In this case the result would
be 4A
NOTE: |If you still don't conpletely get hexadeci mal, you can easily check this by
converting 5, 4F, and 4A to decimal.
4F = 79
4A = 74
5= 5
As with ADD you can al so use a val ue:
MOV BX, 4Fh
SUB BX, 5h

VWi ch | eaves you with BX = 4A

Next in line is the MJ operator. Syntax:
MJL REQ STER

Notice that only one operant is required. That's because the processor assunes that you
want to nultiply the give register with AX or AH

Exanpl e:
MOV AX, 5h
MOV BX, 4Fh

MJL BX

This | eaves AX equal to 18B (4Fh x 5h = 18B). Notice that the result is stored in AX
or AH, dependi ng on what was used for the operation.

Finally we have the DIV operator. Syntax:
DV REGQ STER

Just like the MIJL operator, there is only one operand, and AX is assuned to be the
second one.

Exanpl e:
MOV AX, 5h
MOV BX, 4Fh
DV BX

Now AX equal s Fh since 4Fh / 5h = Fh.
NOTE: The result is rounded to the next |owest nunber:

4Fh = 79
5h = 5
79/ 5 =15.8
15 = Fh

NOTE: For nowit's fine if you use ML and DIV, but they are very slow operators.
That neans if you need speed (in graphics for exanple), NEVER use MJL/DI V!
You can use Shifting conbined with addition/subtraction to achi eve code
that can sonetines be 3000% faster! However shifting is a bit difficult to
understand if you don't know nuch about assenbly yet, | will conpletly discuss
themin the graphics part of this tutorial.

Bit wi se operation
Sounds hard but is very easy. There are 4 bit w se operators: AND, OR XOR, and NOT.
What these do is conpare two values bit for bit. This can be extrenely useful!

AND synt ax:
AND REG STER1, REGQ STER2
AND REG STER, VALUE

AND returns 1 (TRUE) only if BOTH operands are 1 (TRUE)

Exampl e 1:
MOV AX, 5h
MOV BX, 6h

AND AX, BX

The result is stored in AX. So for this example AX = 4. Lets look at that result nore
cl osel y:

5h = 101b

6h = 110b

101b
110b

100b
100b = 4h

Exanmpl e 2:
MOV AX, 5h

AND AX, 6h
The result is the same as in Exanple 1 (AX = 4h).

AND truth table:

0OANDO =0
1 ANDO =0
OAND1 =0
1 AND1 =1
OR synt ax:

OR REG STER1, REG STER2
OR REG STER, VALUE

ORreturns 1 (TRUE) if either operand is 1 (TRUE).
Exanmpl e 1:

MOV AX, 5h

MOV BX, 6h

OR AX, BX

AX is now equal to 7h

5h = 101b
6h = 110b
101b

110b

111b

111b = 7h
OR truth table
OORO0=0
10RO =1
OOR1 =1
1O0R1 =1
XOR synt ax:

XOR REGQ STER1, REG STER2
XOR REGQ STER, VALUE

XOR returns 1 (TRUE) if one or the other operand is 1 (TRUE), but not both
Exanpl e:

MOV AX, 5h

MOV BX, 6h

XOR AX, BX

AX is not equal to 3h

101b
110b

XOR truth table:
0 XOR0 =0
1 XOR 0 =
0 XOR 1 =
1 XOR 1 =

oOR R

And finally we have NOT. NOT is the easiest one as it sinply inverts each bit.

NOT synt ax:
NOT REG STER
NOT VALUE

Exanpl e:
MOV AX, FOh

NOT AX
AX is now equal to F since

FOh = 11110000
Invert it:
00001111

whi ch is:

F

NOTE: The wi ndows cal culator won't work for this, do it by hand.

NOT truth tabl e:

NOT 1 =0
NOT 0 =1
Interrupts

Interrupts are one of the nost useful things in assenbly. An interrupt is just what it
says, a interruption to the normal execution of a program The best way to illustrate
this is one of those "Press any key to continue" things. The programis running but
when you press a key it stops for a split second, check what key you pressed and
continues. This kind of interrupt is known as a Hardware Interrupt because it uses
hardware (the keyboard). The kind of interrupts you will use in your assenbly prograns
are know as Software Interrupts because they are caused by software, not hardware. An
exanpl e of a software interrupt is reading and witing to a file. This is a DOS

i nterrupt because it is done by DCS, than there are other interrupts done by other
things. For exanple your BIOS or Video Card all have build in interrupts at your
exposure. So how does the computer know what interrupt is what? Each interrupt is
assigned a nunber and stored in the Interrupt Vector Table (IVT for short). The IVT is
| ocated at 0000: 0000 (renemnber the segnent:offset shit. This location would be the
originif plotted on a 2D graph). All interrupt handlers are 1 DWORD i n size

(doubl e word, 32bit, or 4 bytes). So the handler for interrupt 1h can be found at

0000: 0004 (since it's a DAMORD it goes up by 4 bytes). The nbst common interrupt is
21h and can be found at 0000: 0084.

So how do you use interrupts?
Very sinpl e:
I NT interrupt

For exanple, in the Program Layout section earlier the programcontain the |ine
I NT 20h
The interrupt 20h returns to DCS.

Sone interrupts like this one only have one function, but other have many nore. So how
does the operating system know what function you want? You set the AX register up

Exanpl e:
MOV AH, 02
MOV DL, 41

INT 21
I NT 20

This programis quite amazing. It prints the character A. Lets make it even better
by plugging it into our |ayout:

MAI N SEGVENT
ASSUME DS: MAI N, ES: MAI N, CS: MAI N, SS: MAI' N
START:
MOV AH, 02h
MOV DL, 41h
I NT 21h
I NT 20h
MAI N ENDS
END START

Save it and assenble it. Refer back to chapter 2 if you forgot how to do that.

So what i s happeni ng here?

First it does the familiar set up, than it set AHto 02, which is the character output
function of interrupt 21. Then it noves 41 into DL, 41 is the character A. Finally

it calls interrupt 21 which displays the A and quits with interrupt 20.

How do you know what you have to set all those registers to? You get a DCS interrupt
list. Check Appendix B for urls.

Quite an acconplishment there, after reading 970 lines of boring text you can finally
make a 11 line programthat would take 1 line to do in Perl! Pad yourself on that back
and | ets nove on.

Exer ci ses:

1. Mdke a programthat gets the value fromAX, puts it into DX and BX, then multiplies
the values in DX and BX and stores the result in CX
This sounds easier than it really is, use the stack to help you out.

2. Make a programthat prints out the string ABC, than quits to DOS
Hnt: A=41, B =42, C= 43

3. Make a programthat perforns ALL bit w se operations using the values 5h and 4Fh

Thr oughout this tutorial you have been using no software other than your assenbler.
In this chapter you will learn how to nmaster other software that can be of trenmendous
help to you.

Lets start with sonething that's not only very useful, but also free and al ready
on your conputer.
Get into dos and type "debug", you will get a pronpt like this:

now type "?", you should get the foll ow ng response:

assenbl e A [address]

conpar e C range address

dunp D [range]

ent er E address [list]

fill F range |ist

go G [=address] [addresses]

hex H val uel val ue2

i nput | port

| oad L [address] [drive] [firstsector] [nunber]
nmove M range address

nane N [pat hnane] [arglist]

out put O port byte

pr oceed P [=address] [nunber]

qui t Q

regi ster R [register]

search S range i st

trace T [=address] [val ue]

unassenbl e U [range]

wite W[address] [drive] [firstsector] [nunber]
al | ocat e expanded nenory XA [#pages]

deal | ocat e expanded nenory XD [handl €]

map expanded nmenory pages XM [Lpage] [Ppage] [handl e]

di spl ay expanded nemory status XS

Lets go through each of these commands:

Assenbl e:

-a

107A: 0100

At this point you can start assenbling sonme prograns, just l|like using a assenbler.
However the debug assenbler is very limted as you will probably notice. Lets try
to enter a sinple program

-a

107A: 0100 MOV AH, 02

107A: 0102 MoV DL, 41

107A: 0104 INT 21

107A: 0106 | NT 20

-9

A

Program term nated nornal |y

That's the same programwe did at the end of the previous chapter. Notice how you

run the programyou just entered with "g", and al so notice how the set-up part is not
there? That's because debug is just too limted to support that.

Anot her thing you can do with assenble is specify the address at which you want to start,
by default this is 0100 since that's where all .COMfiles start.

Compar e:
Conpare takes 2 block of nenory and di splays them side by side, byte for byte. Lets do
an exanple. Quite out of debug if you haven't already using "q"

Now type "debug c:\conmand. conf

-c 0100 I 8 0200

10A3: 0100 7A 06 10A3:0200

Thi s command conpared offset 0100 with 0200 for a length of 8 bytes. Debug responded
with the location that was DIFFERENT. |f 2 locations were the sanme, debug woul d just
omt them if all are the same debug would sinply return to the pronpt without any
response.

Dunp:

Dunp will dunp a specified nenory segnment. To test it, code that assenbly program again:
C. \ >debug

-a

107A: 0100 MOV AH, 02

107A: 0102 MOV DL, 41

107A: 0104 I NT 21

107A: 0106 | NT 20

-d 0100 | 8

107A: 0100 B4 02 B2 41 CD 21 CD 20 A

The "B4 02 B2 41 CD 21 CD 20" is the programyou just nmade in machi ne | anguage.

B4 02 = MOV AH, 02

B2 41 = MOV DL, 41

CD 21 = INT 21

CD 20 = INT 20

The "...A!." part is your programin ASCII. The "." represent non-printable characters.

Notice the Ain there

Enter:
This is one of the hard commands. Wth it you can enter/change certain nenory areas.
Lets change our programso that it prints a B instead of an A

-e 0103 <-- edit program at segnent 0103
107A: 0103 41.42 <-- change 41 to 42

-9

B

Programterm nated nornal |y

Wasn't that amazi ng?

Fill:

This command is fairly usel ess, but who knows. ..

It fills the specified amount of menory with the specified data. Lets for exanple clear
out all memory from segment 0100 to 0108, whi ch happens to be our program

-f 01001 8 0 <-- file offset 0100 for a length of 8 bytes with 0

-d 0100 I 8 <-- verify that it worked

107A: 0100 00 00 00 00 OO OO OO OO L.

Yep, it worked.

Go:

So far we used go (g) to start the programwe just created. But Go can be used for mnuch
more. For exanple, lets say we want to execute a programat 107B: 0100

-r CS <-- set the CSregister to point to 107B

CS 107A

:107B

-g =100

You can al so set breakpoints.

-a <-- enter our original programso we have sonething
107A: 0100 MOV AH, 02 to work with

107A: 0102 MoV DL, 41

107A: 0104 INT 21

107A: 0106 | NT 20

-g 102 <-- set up a break point at 107A: 0102

At this point the programwll stop, display all registers and the current instruction

Hex:

This can be very useful. It subtracts and adds to hexadeci mal val ues:
-h 21

0003 0001 <-- 2h + 1+ = 3h and 2h - 1h = 1h

This is very useful for calculating a prograns length, as you will see later.

| nput :

This is one of the nore advanced commands, and | decided not to talk about it too nuch
for now It will read a byte of data from any of your conputers I/O ports (keyboard,
mouse, printer, etc).

-i 3FD

60

Your data may be different.
In case you want to know, 3FD is Comport 1, also known as First Asynchronous Adapter.

Load:

This command has 2 formats. It can be used to load the filenanme specified with the
nane conmand (n), or it can load a specific sector

-n c¢:\comand. com

-1

This will | oad conmand.cominto debug. Wen a valid programis |oaded all registers wll
be set up and ready to execute the program

The other nmethod is a bit nore conplicated, but potential also nore usefull. The syntax
is

L <address> <drive |letter> <sector> <anount to | oad>

-1 100 2 10 20

This will load starting at offset 0100 fromdrive C (0 = A 1 =B, 2 =C, etc), sector

10h for 20h sectors. This can be useful for recovering files you del eted.

Move:

Move takes a byte fromthe starting address and noves it to the destination address.
This is very good to tenporary nove data into a free area, than nanipulate it wthout
having to worry about affecting the original program It is especially useful if

used in conjunction with the r conmmand to which | will get later. Lets try an exanple:
-a <-- enter our original programso we have sonething
107A: 0100 MOV AH, 02 to work with

107A: 0102 MOV DL, 41

107A: 0104 I NT 21

107A: 0106 | NT 20

-m 107A: 0100 L 8 107B: 0100 <-- nore 8 bytes starting from 107A: 0100 into 107B: 0100

-e 107B: 0103 <-- edit 107B: 0103

107B: 0103 41. 42 <-- and change it 42 (B)

-d 107A: 0100 L 8 <-- make sure it worked

107A: 0100 B4 02 B2 41 CD 21 CD 20 LA

-d 107B: 0100 L 8

107A: 0100 B4 02 B2 42 CD 21 CD 20 ...B.!

-m 107B: 0100 L 8 107A: 0100 <-- restore the original programsince we |like the
changes.

Name:

This will set debug up with a filename to use for I/O conmands. You have to include

the file extension, and you nmay use additi on comuands:
-n c¢:\comand. com

CQut put :
Exactly what you think it is. Qutput sends stuff to an I/O port. |[|f you have an
external nodemw th those cool lights on it, you can test this out. Find out what port

your nodemis on and use the correspondi ng hex nunber bel ow

Com1l = 3F8 - 3FF (3FD for mne)

Com 2 = 2F8 - 2FF

Com 3 = ??? - ??? (if sonmeone knows, please let me know, | would assune though that it's
OF8 - OFF.)

Now turn on the DTA (Data Term nal Ready) bit by sending 0lh to it:

-0 XXX 1 <-- XXX is the comport in hex

As soon as you hit enter, take a | ook at your nodem you should see a light light up
You can have even nore fun with the output command. Say soneone put one of those Bl OS
passwords on "your" conputer. Usually you'd have to take out the battery to get rid of
it, but not anynore:

AM / AWARD BI s

-0 70 17

-0 71 17

QPHCENI X BI CS
-0 70 FF
-0 71 17

QGENERI C
-0 70 2E
-0 71 FF

These commands will clear the BI OS nenory, thus disabling the password. Please note
however that these are fairly old nunbers and Bl CS nmakes constantly change them so
they might not work with your particul ar BICS.

Pr oceed:

Proceeds in the execution of a program usually used together withy trace, which

will cover later. Like the go command, you can specify an address fromwhich to start
usi ng =address

-p2

Debug will respond with the registers and the current command to be execut ed.

Quite:

This has got to be the npst advanced feature of debug, it exits debug!
-q

Regi ster:

This command can be used to display the current value of all registers, or to manually
set them This is very useful for witing files as you will see later on

-r AX

AX: 011B

:5

Sear ch:

Anot her very useful command. It is used to find the occurrence of a specific byte, or
series of bytes in a segnment. The data to search for can by either characters, or a

hex value. Hex values are entered with a space or comma in between them and characters
are enclosed with quotes (single or double). You can also search for hex and characters
with the sane string:

-n c¢:\conmand. com <-- | oad command. com so we have sone data to search in
-1

-s 01 0 "Ms-DCs" <-- search entire nmenory bl ock for "Ms DOS"

10A3: 39E9 <-- found the string in 10A3: 39E9

NOTE: the search is case sensitive!

Tr ace:

This is a truly great feature of debug. It will trace through a program one instruction
at a time, displaying the instruction and registers after each. Like the go command
you can specify where to start executing from and for how | ong.

-a <-- yes, this thing again

107A: 0100 MOV AH, 02

107A: 0102 MOV DL, 41

107A: 0104 I NT 21

107A: 0106 | NT 20

-t =0100 8

If you | eave out the anpunt of instructions that you want to trace, you can use the
proceed (p) to continue the execution as |ong as you want.

Unassenbl e:

Unassenbl es a bl ock of code. Geat for debuggi ng (and cracki ng)

-u 100 L 8 <-- unassenbl es 8 bytes starting at offset 100
107A: 0100 MOV AH, 02 <-- debut's response

107A: 0102 MOV DL, 41
107A: 0104 INT 21
107A: 0106 I NT 20

Wite:

This command works very simlar to Load. It also has 2 ways it can operate: using nhane,
and by specifying an exact |ocation. Refer to back to Load for nore infornmation.

NOTE: The register CX nust be set the file size in order to wite!

NOTE: Wite will not wite files with a .EXE or .HEX extension.

Enough about debug, lets nmove on to CodeVi ew.

CodeVi ew i s anot her programthat m ght cone in handy sonetines. However it is not free.
There are many debuggers simlar to CodeView out there, but it is enough for you to
under st and one.

CodeVi ew has a nunber of different wi ndows, Help, Locals, Watch, Source 1, Source 2,
Menory 1, Menory 2, Registers and a few nore, depending on the version nunber.

The Source W ndows
Source 1 and 2 let you view 2 different source code segnments at the sane tine. This is
very useful for conparing.

Menory W ndows

These wi ndows | et you view and edit different sections of nenory. On the left side
you have the nenory location in segnment:offset form in the mddle the hex value of the
instructions, and on the right side the ASCI| value. Again, non-printable characters
are represented by a "." You can switch between nultiple nenus using F6. You can

al so press Shift+F4 to switch between hexadeci mal, ASCII, words, double words, signed
integers, floating values, and nore.

Regi st er

This nmenu lets you view and change the value in each register. The FL register near
the bottom stands for Flags. At the very bottomyou should see 8 different val ues.
They are the specific flag val ues.

OVINV = Overfl ow (Overfl ow No oVerfl ow)

DNVUP = Direction (DowN/ UP)

DI/El = Interrupt (?7??27)

PL/ NG = Si gn (??2??)

NzZ/ ZR = Zero (Not Zer o/ ZeRo)

NA/AC = Auxiliary Carry (No Auxiliary carry/Auxiliary Carry)

PO PE = Parity (?7??27)

NC/ CY = Cary (????)

Conmand

This wi ndow | ets you pass commands to CodeView. | will not explains these as they are

al most identical to the ones Debug uses, however a bit nmore powerful.

This chapter went through a ot of nmaterial. Make sure you actually get it all, or at
| east nost of it. Debug will be insanely useful later on, so learn it now The key
is practise, lots of practise!

Exerci ses:

1. Make a programthat prints an A on the screen using debug, save it to C drive as
cow.com Quite debug and delete it. Now get back into debug and restore it again.
HINT: |If you delete a file in DOS, DCS sinmply changes the first character to E5

It's not as hard as it sounds, basically here's what you do:
I) Load as many sectors of your drive as you think you will need
I1) Search those sectors for the hex value E5 and the string "ow'
I1l) Dumb the offset of the l|ocation the search returned
IV) Edit that offset and change the E5 instruction to a letter of your choice (41)
V) Wite the sectors you | oaded into RAM back to C drive
Use debug to get your nodeminto CS (Clear to Send) node. The hex value is 2.
3. Make a program cal l ed cursor.comusing debug that will change the cursor size.
I) Mve 01 into AH
I1) Move 0007 into CX
I11) Call interrupt 10
V) Call interrupt 20

N

6. Mor e basics

Bef ore reading this chapter, make sure you conpl etely understood EVERYTH NG | tal ked
about so far.

.COM Fi |l e For mat

COM stands for COre i Mage, but it is nmuch easier to nmenorize it as Copy O Menory, as

that description is even better. A COMfile is nothing nore than a binary inmage of what

shoul d appear in the RAM It was originally used for the CP/Mand even t hough CP/ M were
used in the Z80/8080 period, COMfiles have still the same features as they did back in
the 70's. Let's examine howa COMfile is |oaded into nenory:

1. You type in the file name, DCS searches for filename + .com if found that file gets
executed. If not DOS will search for filename + .exe, if it can't find that it wll
search for filenane + .bat, and if that search fails it will display the famliar
"Bad command or filenane" nessage.

2. If it found a .comfile in step 1, DOS will check its records and nake sure that a
64k bl ock of menory is found. This is necessary or else the new program coul d
overwite existing nenory.

3. Next DCS builds the Program Segnent Prefix. The PSP is a 256 byte |ong bl ock of
menory which | ooks |ike the table bel ow

Addr ess Description

00h-01h Instructions to termnate the program wusually interrupt 20h
02h-03h Segnent pointer to next avail abl e bl ock
04h Reserved, should be O

05h-09h Far call to DOS di spatcher

0Ah- 0Dh I NT 22h vector (Term nate program

OEh- 11h I NT 23h vector (Cirl+C handl er)

12h-15h I NT 24h vector (Critical Error)

16h-17h PSP segnent of parent process

18h- 2Bh Pointer to file handler

2Ch- 2Dh DCS environnent segnent

2Eh-31h SS: SP save area

32h- 33h Nunber of file handl es

34h-37h Pointer to file handle table

40h- 41h DOS version

5Ch- 6Bh File control block 1

6Ch- 7Bh File control block 2

7Ch- 7Fh Reserved

80h Length of paraneter string

81h- FFh Default DTA (Di sk Transfer Area)

DS, ES, and SS are set to point to block of nenory

SP is set to FFFFh

0000h is pushed on the stack (stack is cleared)

CSis set to point to nenory (segnent), IPis set to 0100h (offset, renenber debug?)

No ok

The PSP is exactly 255 bytes long, neaning that to fit into one segnent (aka. to be a valid
.comfile your program cannot be |arger than 65280 bytes). However as | nentioned before, by
the tine you can code a programin assenbly that is that |large, you already know wel

nmore than enough to nake a . EXE file.

So what do you need this information for? Well like all other nenory, you can view

and edit the PSP. So you could play around with it. For exanple, |ater when we get

into file operations you will be working with the DTA. O naybe you need to know t he

DCS version, you can just check 40h-41h, etc.

Fl ow control operations

Fl ow control operations are just what the nane says, operations that control the flow

of your program |f you have worked with another |anguage before, those are the if/then
statenents. From what you' ve hear about assenbly, you might think that this is fairly
difficult, but it's not. To do the equivalent of a if/then | will have to introduce you
to 3 new things, |abels, the conpare comand and junp instructions. First things first,
maybe you recall the sinple programthat prints A fromthe interrupts section. Notice
how our | ayout contains the line START:? START: is a label. |If you come from

C/ C++/ Pascal you can think of a label alnpbst |like a function/procedure. Take a |ook at
the followi ng code, by now you shoul d know what's happeni ng here:

MAI N SEGVENT
ASSUME CS: MAI N, DS: MAI N, SS: NOTHI NG

ORG 100h

START:
I NT 20

MAI N ENDS
END START

Notice the Iine that saying START:, that's a label. So what's the point of putting

| abel s in your code? Sinple, you can easily junp to any | abel in your program using the
JMP operator. For exanple, consider the follow ng code:

MAI N SEGVENT
ASSUME CS: MAI N, DS: MAI N, ES: MAI N, SS: MAI N

ORG 100h

START:
MOV AH, 02h
MOV DL, 41h
I NT 21h

JWP EXIT

MOV AH, 02h
MOV DL, 42h
I NT 21h

EXIT:
I NT 20h

MAI N ENDS
END START

First the programprints an A using the fanmliar routine, but instead of using |INT 20h
to exit, it junps to the label EXIT and calls INT 20h fromthere. The result is that it
conmpl etely skips everything after the JMP EXIT line, the B doesn't get printed at all.
So by using a | abel you can easily close the programfrom any | ocati on.

This is fairly useless so far though. It gets interesting when you start using sone of
the other junmp commands. | will only explain a few here as there are just too nany.
Bel ow is a al phabetical |ist of nost of them
JA - Junp i f Above

JAE - Junp if Above or Equal

JB - Junp if Bel ow

JBE - Junp if Below or Equal

JC - Junp on Carry

JCXZ - Jump if CX is Zero

JE - Junp i f Equal

JG - Junp if Greater

JGE - Jump if Geater than or Equal

JL - Junp if Less than

JLE - Junp if Less than or Equal

JMP - Junp unconditionally

JNA - Junp if Not Above

JNAE - Junp if Not Above or Equal

JNB - Junp if Not Bel ow

JNE - Junmp if Not Equal

JNG - Junmp if Not Greater

JNGE - Junmp if Not Greater or Equal

JNL - Jump if Not Less

JNLE - Jump if Not Less or Equal
JNO - Junmp if No Overfl ow

JNP - Junp on No Parity
JNS - Jump on No Sign
JNZ - Junp if Not Zero
JO - Junp on Overfl ow
JP - Junp on Parity

JPE - Jump on Parity Even

JPO - Junp on Parity Cdd
JS - Junp on Sign

Jz - Junp on Zero

Sone of these are fairly self-explanatory (like JCXZ), but others require some nore
expl anation. What is being conpared to what, and how does the junp know the result?
Vel | al nost anything can be compared to al nost anything. The result of that conparison
is stored in the flags register. The junmp command sinply checks there and response
accordingly. Let's make a sinple if/then like structure:

MAI N SEGVENT
ASSUME CS: MAI N, DS: MAI N, ES: MAI N, SS: MAI' N

ORG 100h

START:
MOV DL, 41h
MOV DH, 41h
CVP DH, DL
JE TheyAreTheSane
JMP TheyAr eNot Sane

TheyAr eNot Sane:
MOV AH, 02h
MOV DL, 4Eh
I NT 21h
I NT 20h

TheyAr eTheSane:
MOV AH, 02h
MOV DL, 59h
I NT 21h
I NT 20h

This code is fairly straight forward, it could be expressed in C++ as:
void main () {

int DH, DL
DL = 41
DH = 41

if (DH == DL) {
cout << "VY";
} else {
cout << "N';
}

In this case the programwill return Y, but try changing either DH, or DL to sone ot her
value. It should display N

H NT: Tired of constantly typing "tasm bl ah.asni, "tlink /t blah.obj"? Make a sinple
batch file containing the following 3 lines and save it as a.bat in your tasmdir.

@CHO CFF
TASM %.. ASM
TLINK /T %. OBJ

Now you can just type "a blah", even without the file extension.
If you have A86 and are sick of typing "a86 bl ah.asn, just renane a86.exe to
somet hing |i ke a.exe.

Loops are a essential part of programmng, in fact |oops nake the difference between

bei ng a programm ng | anguage and being sonmething like HTM.. |f you don't know what

| oops are, they are just the repeaded execution of a block of code. The 2 npbst conmmobn
types of | oops are For and Wil e.

A for | oop repeads a bl ock of code until a certain condition is net. Look at the

foll owi ng C++ code

mai n()
{
for (int counter = 0; counter < 5; counter++)
{
cout << "A";
}
return O,

This will produce the follow ng output:
AAAAA

This code is fairly easy, it initializes a variable and sets it equal to zero. It wll
loop until the varialbe is less than 5, and after each execution the variable gets
incremented. Now | ets nake an exact copy of that programin assenbly:

bl ah segnent

assune cs: bl ah, ds:blah, ss:blah, es:blah, ss:blah ;do the usual setup

org 0100h

start: ;label for start of program
MOV CX, 5 ;cx is always the counter

LOOP_LABEL: ;label to | oop
MOV AH, 02h ;do the familiar A shit (this printed some werd
MOV DL, 41h ;character instead for ne, anyone know why?)
I NT 21h
LOOP LOOP_LABEL ;1 oop everything in between | oop_|l abel: and the

;1 oop statement as many tines as specified in CX

I NT 20h

;usual ending shit
bl ah ends
end Start

Qut put shoul d be:

AAAAA

C\>

But as | said, it printed sone other shit for me. Wll who cares, as long as it | ooped.
This code is basicly doing this:

1. Set CXto 5

2. Print an A

3. Check of CX =0, if not decrenment CX

4. Go back to | oop_| abe

5. Check if CX =0, if not decrement CX

6. etc

Next we have the While loop. It also repeads a block of code as long as a condition is

true, but the condition is not changed during in the | oop declaration as with the For
| oop. Take a look at a sinple C++ While | oop

mai n()

{
int counter = O;
whi | e(counter < 5)

{

count er ++
cout << "A";

}

return O;

Noti ce how the condition is being changed in the actual loop. This is very inportant as
you may already know. Let's convert that piece of code to assenbly:

bl ah segnent
assune cs: bl ah, ds:blah, ss:blah, es:blah ;do the usual setup
org 0100h
start:
MOV CX, 5 ;set CX equal to 5
| oop_| abel
MOV AH, 02h ;print the A
MOV DL, 41h
I NT 21h
DEC CX ; decrement CX
CWP CX, 0 ;check if CXis zero
JNZ | oop_|I abel ;no? go back to | oop_| abe
I NT 20h ;yes? termnate program

;usual ending shit
bl ah ends
end Start

CQut put :
AAAAA
C\>

They | ook al nost identical, so what's different? And why use en? Well the For loop is
good for |oops that have a set nunber of repetitions, while the while | oop can change
the anmobunt or repedition during the |oop execution. This is useful for user input for
exanple. It is also possible to make a for | oop w thout using the | oop statenent,

just like you would do a while |oop. That mght not |ook as pretty, but it can
potentially be a bit faster

Sonmetimes interrupts can nodify the CX register, in which case your | oop would | oop an
unpredi ct abl e nunber of times. That's not good. To stop that you can nake use of the
st ack:

MAI N SEGVENT
ASSUME CS: MAI N, DS: MAI N, ES: MAI N, SS: MAI' N

ORG 100h

START:
MOV CX, 5

Loop_Label
PUSH CX ;store CX on the stack
MOV AH, 02h
MOV DL, 41h
I NT 21h
POP CX ;restore it after the pass is conpleted

LOOP Loop_Labe

I NT 20h
;usual ending shit

MAI N ENDS
END START

Vari abl es

Yeah, yeah, yeah, | know there are no variables in assenbly, but this is close enough
for me.

You may be familiar with variables if you' ve come from another |anguage, if not
variabl es are sinply a nane given to a nenory area that contains data. To access that
data you don't have to specify that nmenory address, you can sinply refer to that
variable. In this chapter I will introduce you to the 3 nost common vari abl es types:
byt es, words, and double words. You declare variables in this fornmat:

NAMVE TYPE CONTENTS

Were type is either DB (Declare Byte), DW (Declare Wrd), or DD (Decl are Doubl eWrd).
Vari abl es can consi st of nunber, characters and underscores (_), but must begin with
a character.

Exampl e 1:
A Nunber DB 1

This creates a byte long variable called A Nunber and sets it equal to 1

Exanmpl e 2:
A Letter DB "1"

This creates a byte long variable called A Letter and sets it equal to the ASCI | val ue
1. Note that this is NOT a numnber.

Exanpl e 3:
Bi g_nunber DD 1234

Thi s declares a Double Wrd | ong variable and sets it equal to 1234.

You can al so create constants. Constants are data types that |ike variables can be used
in your programto access data stored at specific menory |ocations, but unlike variables
they can not be changed during the execution of a program You decl are constants al npost
exactly like variables, but instead of using D?, you use EQU. Well actually EQU

decl ares a Text Macro. But since we haven't covert macros yet and the effect is

basicly the same, we will just tread it as a constant.

Exanpl e 4:
const ant EQU DEADh

So how do you use variables and constants? Just as if they were data. Take a | ook at
the next exanpl e:

Exanpl e 5:
constant EQU 100
nov dx, const ant
nov ax, const ant
add dx, ax

This declares a constant called constant and sets it equal to 100, then it assigns the
value in constant to dx and ax and adds them This is the sane as

mov dx, 100

mov ax, 100

add dx, ax

The EQU directive is a bit special though. 1It's not really a standard assenbly
instruction. |It's assenbler specific. That means that we can for exanple do the

fol | owi ng:

bl Ow EQU PUSH
sUcK EQU POP

bl Ow CX
sUcK CX

When you assenble this, the assenbler sinply substitues PUSH and POP with every
occurance of bl Ow and sUcK respectivly.

Using this know edge it is possible to create sinple arrays.
Exampl e 1:
A String DB "Cheese$"

This creates a 5 byte long array called A String and sets it equal to the string Cheese.
Notice the $ at the end. This has to be there, otherwise your CPU will start

executing instructions after the |ast character, which is whatever is in nmenory at

that particular location. There probably won't be any damage done, but who knows
what's hidden in those dark corners..

To use quotes (single or double) within a string you can use a little

trick:

Exampl e 2:
Cow DB 'Ral ph said "Cheese is good for you!"$
or

Cow DB "Ral ph said 'Cheese is good for you!'$"
Use whi chever you think | ooks better. What if you have to use both types of quotes?

Exanpl e 3:
Cow DD 'Ralph said "I say: ""GNAAAARF!""$
Use doubl e doubl e/ si ngl e quot es.

What if you don't know what the variable is going to equal? Maybe it's user-inputed.

Exampl e 4:
Uninitialized variable DB ?

Now |l ets use a variable in an actual program

MAI N SEGVENT
ASSUME CS: MAI N, DS: MAI N, ES: MAI N, SS: MAI N

ORG 100h

START:
CON DB "Hello World! $"
MOV AH, 09h
MOV DX, OFFSET COW
I NT 21h
I NT 20h
MAI N ENDS
END START

Yes, even in assenbly you finally get to nmake a Hello Worl d program
Here we're using interrupt 21h, function 9h to print a string. To use this interrupt
you have to set AHto 9h and DX nust point to the |ocation of the string.

NOTE: VERY inportant! ALWAYS declare unitialized arrays at the VERY END of your
program or in a special UDATA segment! That way they will take up no space

at all, regardl ess of how big you decide to nmake them For exanple say you have
this in a program

Sone_Data DB ' Cheese'

Sone_Array DB 500 DUP (?)

More Data DB 'Mre Cheese'

This will automaticly add 500 bytes of NULL characters to your program However
if you do this instead:

Sone_Data DB ' Cheese'

More Data DB 'Mre Cheese'

Sone_Array DB 500 DUP (?)

Your programwi |l becone 500 bytes snaller.

String Operations

Now t hat you know sone basics of strings, let's use that knowl edge. There are a
nunber of string operations available to you. Here | will discuss 4 of them

Lets start with MOVSB. This command will nove a byte fromone | ocation to another.
The source destination is ES:SI and the destination is DS: Dl .

Exanmpl e 1:
MAI N SEGVENT
ASSUVE CS: MAI N, DS: MAI N, ES: MAI N, SS: MAI N

ORG 100h

START:
MOV AH, 9

MOV DX, OFFSET NEWSTRI NG
I NT 21h

MOV DX, OFFSET OLDSTRI NG
I NT 21h

MOV CX, 9
LEA SI, OLDSTRI NG
LEA DI, NEWSTRI NG

REP MOVSB

MOV DX, OFFSET NEWSTRI NG
I NT 21h

MOV DX, OFFSET COLDSTRI NG
I NT 21h

I NT 20h
OLDSTRI NG DB ' ABCDEFGHI $'
NEWSTRI NG DB ' 123456789 $'
MAI N ENDS
END START

CQut put :
ABCDEFGHI 123456789 ABCDEFGHI ABCDEFGHI

This little exanmple has a few instructions that you haven't seen before, so lets
go through this thing step by step.

1. W do the regular setup

2. W use the nethod fromthe previous section to print NEWSTRI NG (ABCDEFGH!)
3. W print OLDSTRI NG (123456789)

4. We set CX equal to 9. Reneber that the CX register is the counter.

Here's a new instruction, LEA. LEA stands for Load Effective Address. This
instruction will load the contents of a "variable" into a register. Since D
contains the destination and SI the source, we assign the |ocation of NEWSTRI NG
and OLDSTRING to themrespectivly

MOVSB is the string operator that will nove a byte fromSlI to DI. Since we have
an array of 9 characters (well 10 if you count the space, but that is the sane
in both anyway) we have to nove 9 bytes. To do that we use REP. REP will REPeat
the given instruction for as nmany tinmes as specified in CX. So REP MOSB wi | |
performthe nove instruction 9 tines, ones for each character.

To see our result we sinple print each string again using the sane code we used
in step 2 and 3.

The next string operator is not only very easy to use, but also very useful. It

Wil

scan a string for a certain character and set the EQUAL flag bit if the search

was successful. The operator is SCASB, the location of the string is in D, and
the character is stored in AL.

Exanmpl e 2:
MAI N SEGVENT

ASSUME CS: MAI N, DS: MAI N, ES: MAI N, SS: MAI N

ORG 100h

START:

MOV CX, 17h
LEA DI, STRI NG
MOV AL, SEARCH

REPNE SCASB

JE FOUND
JNE NOTFOUND

NOTFOUND:

MOV AH, 09h

MOV DX, OFFSET NOTFOUND_S
I NT 21h

I NT 20h

FOUND:

MOV AH, 09h

MOV DX, OFFSET FOUND_S
I NT 21h

I NT 20h

SEARCH DB "I

STRI NG DB ' Cheese is good for you!'
FOUND_S DB ' Found$'

NOTFOUND_S DB ' Not Found$'

MAI N ENDS

END START

This should be fairly easy to figure out for you. If you can't, I'll explain it:

1. We do the usual setup

2. W set CX equal to 17h (23 in decimal), since our string is 17h characters |ong
3. We load the location of STRING into DI

4. And the value of the constant SEARCH into AL

5. Now we repeat the SCASB operation 23x

6. And use a junp to signal wether or not we found the string

Finally we have the CWS instruction. This operator will conpare the value of two
strings with each other until they're equal.

Exampl e 3:
MAI N SEGVENT
ASSUME CS: MAI N, DS: MAI N, ES: MAI N, SS: MAI N

ORG 100h

START:
MOV CX, 17h
LEA SI, STRI NG1
LEA DI, STRI NG

REP CMPSB

JE EQUAL

JNE NOTEQUAL
NOTEQUAL :

MOV AH, 09h

MOV DX, OFFSET NOT_EQUAL

I NT 21h

I NT 20h
EQUAL:

MOV AH, 09h

MOV DX, OFFSET EQUAL1

I NT 21h

I NT 20h
STRI NGL DB ' Cheese is good for you!'
STRI NG DB ' Cheese is good for you!'
EQUAL1 DB ' They''re equal $'
NOT_EQUAL DB 'They''re not equal $'
MAI N ENDS
END START

By now you should know what's going on. Sl and DI contain the two strings to be
compared, and REP CMPSB does the conparison 17h tines, or until it cones across
two bytes that are not equal (b and g in this case). Then it does a junp comrand
to display the appropri ate message.

The final string operations | will introduce you to are STOSB and and LODSB. STCSB
will store a byte fromAL at the location that ES:D points to. STOSB will get a byte
that ES: D points into AL. These two instructions are very very powerful as you will
see if you continue |earning assenbly. Take a |ook at the next exanpl e.

MAI N SEGVENT
ASSUME CS: MAI N, DS: MAI N, ES: MAI N, SS: MAI N

ORG 100h

START:
MOV AH, 9
MOV DI, OFFSET STRI NG

MOV SI, DI

LCDSB
I NC AL
STCSB

MOV DX, DI
DEC DX

I NT 21h
I NT 20h

STRI NG DB "oh33r! $"

MAI N ENDS
END START

This code will return:
ph33r!

So what does it do?

It moves 9 into AHto set it up for interrupt 21's Print String function
Move the location of STRINGinto DI for the the LODSB instruction

Do the same with S

Load ES: D into AL

I ncrenent AL, thus changing it fromo to p

And put the contents of AL back to ES: Dl

Put DI into DX for interrupt 21's Print String function

STOSB will increment DI after a successful operation, so decrenent it
Call interrupt 21h

0. And term nate the program

BOONOOA~A®WNE

And here's a final note that | should have mentioned earlier: Al these string
instructions actually don't always end in B. The B sinply neans Byte but could be
replaced by a Wfor exanple. That is, MWSB will nove a byte, and MOVSWw || move a
word. |If you're using a instruction that requires another register |like AL for exanple,
you use that registers 32 or 64 bit part. For exanple, LODSWw Il nmove a word into AX

Sub- Pr ocedur es

This chapter should be fairly easy as | will only introduce one new operator, CALL.
CALL does just that, it CALLsS a sub-procedure. Sub-Procedure are al nmost exactly |ike
| abel s, but they don't end with a : and have to have a RET statenent at the end of the
code. The purpose of sub-procedures is to nake your life easier. Since you can cal
them from anywhere in the programyou don't need to wite certain sections over and
over again.

MAI N SEGVENT
ASSUME CS: MAI N, DS: MAI N, ES: MAI N, SS: MAI N

ORG 100h

START:

CALL CHEESE
CALL CHEESE
CALL CHEESE
CALL CHEESE
CALL CHEESE
CALL CHEESE
CALL CHEESE
I NT 20h

CHEESE PROC
MOV AH, 09
LEA DX, MSG
I NT 21h

RET
CHEESE ENDP

MSG DB ' Cheese is good for you! $

MAI N ENDS
END START

1. W use the CALL command to call the sub-procedure CHEESE 7 tines.

2. W set up a sub-procedure called CHEESE. This is done in the follow ng fornat:
LABEL PRCC

3. W type in the code that we want the sub-procedure to do

4. And add a RET statenment to the end. This is necessary as it returns control to the
mai n function. Wthout it the procedure wouldn't end and I NT 20h woul d never get
execut ed.

5. W end the procedure using
LABEL ENDP

6. The usual ..

Finally! User Input has arrived. This chapter will discuss sinple user input using
BIOS interrupts. The main keyboard interrupt handler is 16h. For the first part of this
chapter we will be using the function Oh

Lets start with a sinple programthat waits for a keypress:

Exanmpl e 1:
MAI N SEGVENT
ASSUVE CS: MAI N, DS: MAI N, ES: MAI N, SS: MAI N
ORG 100h
START:
MOV AH, O
I NT 16h
I NT 20h
MAI N ENDS
END START

This programwaits for you to press a key, and then just quits. Expected nore?
course. W have the echo the key back. Only than it will be truly 3| 337. Renenber
all those programs you did in the debug part of this tutorial that printed out an A?
Renenber how we did it? No? Like this:

Exampl e 2:
MAI N SEGVENT
ASSUME CS: MAI N, DS: MAI N, ES: MAI N, SS: MAI N

ORG 100h

START:
MOV AH, 2h
MOV DL, 41h
I NT 21h
I NT 20h
MAI N ENDS
END START

Noti ce how the register DL contains the value that we want to print. Well if we use
interrupt 16h to get a key using function Oh, the ASCII scan code gets stored in AL, so
all we have to do is nove AL into DL, then call the old interrupt 21h, function 2h.

Exanmpl e 3:
MAI N SEGVENT
ASSUVE CS: MAI N, DS: MAI N, ES: MAI N, SS: MAI N

ORG 100h

START:
MOV AH, Oh
I NT 16h

MOV AH, 2h

MOV DL, AL

I NT 21h

I NT 20h
MAI N ENDS
END START

Isn't this awesone? Well that's not all INT 16 can do. It can also check the status
of the different keys like Crl, At, Caps Lock, etc. Check Appendix A for links to
interrupt listings and | ook them up

Let's use our new found t3kn33kz to create another truly 3| 337 program

Exanpl e 4:
MAI N SEGVENT
ASSUME CS: MAI N, DS: MAI N, ES: MAI N, SS: MAI N

ORG 100h

START:
MOV AH, Oh
I NT 16h
MOV KEY, AL

CMP KEY, 90h
JEITSAZ
JNE NOT_A Z

MOV AH. 9h
MOV DX, OFFSET NOTA
INT 21h

I NT 20h

MOV AH, 2h
MOV DL, KEY
INT 21h

I NT 20h

KEY DB ?

NOTA DB "You pressed z!!!iiitirir" 10,13, "Ph33r! $"
MAI N ENDS

END START

Wel | you should be able to understand this program w t hout any problens. If you don't:
1. W set AXto Oh and call interrupt 16h, that waits for the user to press a key
2. W nove the value of AL (which holds the ASCI|I value of the key pressed) into
a variable. This way we can manipulate the registers w thout having to worry about
destroying it
3. We conpare KEY with 90h, which is hex for Z (case sensitive)
4. 1f it is aZ w junp to ITS A Z which displays the nessage

5. If not, we junp to NOT_A Z, which sinply echos the key back

6. We decalared 2 variables, one which is not initialized yet called KEY, and one
that holds the value "You pressed zZ!!!'!1111" 10,13,"Ph33r! $" Wich |ooks like
this on a DOS conputer:
You pressed zZ!!t111il
Ph33r!

Exerci ses:

1. Make a programthat will accept a series of keypresses, but when the user enters
the follow ng characters, convert themto their real values as shown bel ow

S =2
F = PH
PH=F
E =3

I =1
EA = 33
T =7
O =0
A =4
L = |
NOTE: This is NOT case sensitive. In other words, you're going to either have to

convert |ower case to upercase (or the otherway around) as soon as its entered by
for exanple subtracting 20 fromthe ASCI| val ue, or by nmaking a branch for either
case.

Al so, try using procedures to do this.

7. Basics of Gaphics

Graphics are sonething we all love. Today you will learn howto create sone bad ass
graphics in assenbly! Well actually | will tell you howto plot a pixel using various
met hods. You can apply that know edge to create sone other graphics routines, like
line drawing shit, or a circle maybe. It's all just grade 11 nath.

Using interrupts

This is the easiest method. W set up sonme registers and call an interrupt. The
interrupt we will be using is 10h, BIOS video. Before we do anything, we have to
get into graphics node. For the purpose of sinplicity | will just cover 320x200x256
resolution (that is 320 vertical pixels, 200 horizontal pixels, and 256 shades of
colors). So how do you get into this node? You set AHto 00h and AL to 13h. 00h
tells interrupt 10h that we want to get into graphics node, and 13h is the node
(320x200x256) .

Exanmpl e 1:
MAI N SEGVENT
ASSUME DS: MAI N, ES: MAI N, SS: MAI N, CS: MAI N

ORG 100h

START:
MOV AH, 00h
MOV AL, 13h
I NT 10h

I NT 20h
MAI N ENDS
END START

This ins't too exiting, just looks bigger. Let's plot a pixel.

Exampl e 2:
MAI N SEGVENT
ASSUME DS: MAI N, ES: MAI N, SS: MAI N, CS: MAI N

ORG 100h

START:
MOV AH, 00h
MOV AL, 13h
I NT 10h

MOV AH, OCh
MOV AL, 10
MOV CX, 100
MOV DX, 100
MOV BX, 1h
I NT 10h

I NT 20h
MAI N ENDS
END START

First we get into graphics node, then we set AH to OCh which is the Draw Pi xel function
of interrupt 10h. In order to use OCh we have to set up sone other registers as well.
AL contains the colors of the pixel, CX the location on the X axis and DX the | ocation
on the Y axis. Finally BX tells interrupt 10h to use page one of the VGA card. Don't
worry about what pages are until you get into nore advanced shit.
Once in graphics node you can switch back to text using

MOV AH, 00h

MOV AL, 03h

I NT 10h
So putting it all together, the following programw Il draw a green pixel at |ocation
100, 100 on page 1, then switch back to text node, clearing the pixel along the way.
Notice that it sets the AL and AH registers using only 1 nmove by nmoving theminto AX
This might save you a clock tick or two and nmakes the executable file a whooping 3
bytes snall er!

Exampl e 3:
MAI N SEGVENT
ASSUME DS: MAI N, ES: MAI N, SS: MAI N, CS: MAI N

ORG 100h

START:
MOV AX, 0013h
I NT 10h

MOV AX, 0C04h
MOV CX, 100
MOV DX, 100
MOV BX, 1h

I NT 10h

MOV AX, 0003h
I NT 10h

I NT 20h
MAI N ENDS
END START

Even though we did a bit of optim zation there, it's still very slow. Maybe with one

pi xel you won't notice a difference, but if you start drawing screen full after screen
full using this nethod, even a fast conputer will start to drag. So lets nove on to
sonmething quite a bit faster.

By the way, if you' re conputer is faster than a 8086, you will see nothing at all
because even though the routine is slow, a single pixel can still be drawn fast. So
the programw Il draw the pixel and earase is before your eye can conprehend its

exi st ance.

Witing directly to the VRAM
This is quite a bit harder than using interrupts as it involves sone math. To nake
things even worse | will introduce you to some new operators that will nake the pixels
appear even faster.
When you used interrupts to plot a pixel you were just giving the X Y coordi nates,
when witing directly the the VRAMyou can't do that. |Instead you have to find the
offset of the X, Y location. To do this you use the follow ng equation
Ofset =Y x 320 + X
The segnment is A000, which is were VRAM starts, so we get:
A000: Y x 320 + X
However conputers hate nultiplication as it is just repeated adding, which is slow
Let's break that equation down into different numers:
A000:Y x 256 + Y x 64 + X
or
A000:Y x 278 + Y x 2"6 + X
Noti ce how now we're working with base 2? But how to we get the power of stuff?
Using Shifts. Shifting is a fairly sinple concept. There are two kinds of shifts,
shift left and shift right. When you shift a nunber, the CPU sinply adds a zero to
one end, depending on the shift that you used. For exanple, say you want to shift
256

256 = 100000000b
Shift Left: 1000000000b

512 = 1000000000b
Shift Right: 0100000000b

256 = 100000000b
Shifts are equal to 2”n where N is the nunber shifted by. So we can easily plug shifts
into the previous equation
AO0O:Y SHL 8 + Y SHL 6 + X

This is still analog. Let's code that in assenbly:
SET VSEGVENT: ;set up video segnent
MOV AX, 0A00Oh ;point ES to VGA segnent
MOV ES, AX
VALUES: ;various values used for plotting |ater on
MOV AX, 100 ; X location
MOV BX, 100 ;Y location
GET_OFFSET: ;get offset of pixel location using XY
MOV DI, AX ;put X location into DI
MOV DX, BX ;and Y into DX
SHL BX, 8 ;Y * 278, sane as saying Y * 256
SHL DX, 6 ;Y * 278, sane as sayinh Y * 64
ADD DX, BX ;add the two together
ADD DI, BX ;and add the X |l ocation

Now all we have to do is plot the pixel using the STCSB instruction. The color of the
pi xel will be in AL.

MOV AL, 4 ;set color attributes

STCSB ;and store a byte

So the whole code to plot a pixel by witing directly to the VRAM | ooks |ike this:

MAI N SEGVENT
ASSUME CS: MAI N, ES: MAI N, DS: MAI N, SS: MAI N

ORG 100h
START:
MOV AH, 00h ;get into video node. 00 = Set Video Mde
MOV AL, 13h ; 13h = 320x240x16
I NT 10h
SET VSEGVENT: ;set up video segnent
MOV AX, 0AO0Oh ;point ES to VGA segnent
MOV ES, AX
VALUES: ;various values used for plotting | ater on
MOV AX, 100 ; X location
MOV BX, 100 ;Y location
GET_OFFSET: ;get offset of pixel location using X Y
MOV DI, AX ;put X location into DI
MOV DX, BX ;and Y into DX
SHL BX, 8 ;Y * 278, sane as saying Y * 256
SHL DX, 6 ;Y * 2728, sane as sayinh Y * 64
ADD DX, BX ;add the two together
ADD DI, BX ;and add the X | ocation
;this whole thing gives us the offset |ocation of the pixel
MOV AL, 4 ;set color attributes
STCSB ;and store
XOR AX, AX ;wait for keypress
I NT 16h
MOV AX, 0003h ;switch to text node
I NT 10h
I NT 20h ;and exit
END START
MAI N ENDS

If you don't understand this yet, study the source code. Renobve all comments and add
them yourself in your own words. Know what each line does and why it does what it does.

A line draw ng program

To finish up the graphics section |'mgoing to show you a little nodification to the
previous programto nake it print a line instead of just a pixel. Al you have to do is
repeat the pixel ploting procedure as many tinmes as required. It should be conmented
wel | enough, so | wont bother explaining it.

MAI N SEGVENT
ASSUME CS: MAI N, ES: MAI N, DS: MAI N, SS: MAI N
ORG 100h
START:
MOV AH, 00h ;get into video node. 00 = Set Video Mdde
MOV AL, 13h ; 13h = 320x240x16
I NT 10h

SET VSEGVENT: ;set up video segnent

MOV AX, 0AO0Oh ;point ES to VGA segnent

MOV ES, AX
VALUES: ;various values used for plotting |ater on
MOV AX, 100 ; X location
MOV BX, 100 ;Y location
MOV CX, 120 ;length of Iine. wused for REP
GET_OFFSET: ;get offset of pixel location using X Y
MOV DI, AX ;put X location into DI
MOV DX, BX ;and Y into DX
SHL BX, 8 ;Y * 228, sane as saying Y * 256
SHL DX, 6 ;Y * 278, sane as sayinh Y * 64
ADD DX, BX ;add the two together
ADD DI, BX ;and add the X | ocation
;this whole thing gives us the offset |ocation of the pixe
MOV AL, 4 ;set color attributes
REP STCSB ;and store 100 bytes, decrenenting CX and
;incrementing Di
XOR AX, AX ;wait for keypress
I NT 16h
MOV AX, 0003h ;switch to text node
I NT 10h
I NT 20h ;and exit
END START
MAI N ENDS

8. Basics of File Operations

In the old days, DCS did not include interrupts that would handle file operations. So
programers had to use some conplicated t3kn33kz to wite/open files. Today we don't
have to do that anymore. DOS includes quite a fewinterrupts to sinplify this process.

Fil e Handl es
File handl es are are nunbers assigned to a file upon opening it. Note that opening
a file does not nean displaying it or reading it. Take a look at the follow ng code:

MAI N SEGVENT
ASSUME CS: MAI N, DS: MAI N, SS: MAI N, ES: MAI N
ORG 100h

START:
MOV AX, 3D00h
LEA DX, FI LENAVE
I NT 21h

JC ERROR
I NT 20h

ERROR
MOV AH, 09h
LEA DX, ERRORMSG
I NT 21h

I NT 20h

FILENAME DB ' TEST. TXT', 0
ERRORMSG DB 'Unable to open [test.txt]$

MAI N ENDS
END START
If you have a file called test.txt in the current directory the programwll sinply
quite. If the file is missing it will display an error nmessage. So what's happening
her e?
1. We nove 3D00Oh into AX. This is a shorter way of saying:

MOV AH, 3Dh

MOV AL, O0Oh

3Dh is the interrupt 21h function for opening files. The interrupt checks the AL
register to how it should open the file. The value of AL is broken down into
the foll ow ng:

Bit 0-2: Access node
0 - Read

1 - Wite

2 - Read/Wite

Bit 3: Reserved (0)

Bit 4-6: Sharing Mde
0 - Conpadibility

1 - Exclusiv

2 - Deny Wite

3 - Deny Read

4 - Deny None

Bit 7: Inheritance Flag
0O - Fileis inherited by child processes
1 - Prive to current process

Don't worry too much about what all this neans. W will only use the Access node
bit.

2. W load the address of the file name into DX. Note that the filenane has to be an
ASCI | Z string, nmeaning it is terminated with a NULL character (0).

3. W call interrupt 21h

4. If an error occured while opening the file, the carry flag is set and the error
code is returned in AX. In this case we junp to the ERROR | abel
5. If no error occured, the file handel is stored in AX. Since we don't know what to

do with that yet, we terminate the programat this point.

Reading files

Havi ng optained the file handle of the file, we can now use the file. For exanple
read it. Wen you use interrupt 21h's file read function, you have to set up the
registers as follows:

AH = 3Fh

BX = File handl e

CX = Nunber of bytes to read

DX = Pointer to buffer to put file contents in

Than you sinply print out that buffer using interrupt 21h's print string function
However notice how you have to specify the anount of data to read. That's not good
since nost of the time we don't know how much data is in a file. So we can use a
little trick. |If an error occured, the error code is stored in AX. The error code 0
means that the program has encounter a ECF (End O File). So we can sinply nake a

while loop that prints a single byte fromthe text as long as AX is not equal to zero.
If it is, we knowthat the file ended and we can terninate the program Note that it
i s good coding practise to use interrupt 21h's function Close File to do just that.
Here is the code for this thing:

MAI N SEGVENT
ASSUME CS: MAI N, DS: MAI N, SS: MAI N, ES: MAI' N
ORG 100h

START:
MOV AX, 3D00h
LEA DX, FI LENAMVE
I NT 21h

JC ERROR
MOV BX, AX

READFI LE:
MOV AH, 3Fh
MOV CX, 0001h
LEA DX, CHARACTER
I NT 21h

CMP AX, 000h
JE ENDPROGRAM

MOV AH, 02h
MOV DL, CHARACTER
I NT 21h

JVMP READFI LE

ENDPROGRAM
MOV AH, 3Eh
I NT 21h

I NT 20h

ERROR:
MOV AH, 09h
LEA DX, ERRORMSG
I NT 21h

I NT 20h

FI LENAME DB ' TEST. TXT', 0

ERRORMSG DB ' Unable to open [test.txt]$
CHARACTER DB ?

MAI N ENDS

END START

This is a fairly big piece of code, but you should be able to understand it.

1. We get the file handle using the nmethod di scussed in the previous chapter

2. W nove the file handle fromAX into BX. This is because interrupt 21h's
function to read a file requires the handle to be in BX

3. W nmove 3Fh into AH, tells interrupt 21h that we want to read a file

4. CX contains the bytes to read, we only want one

5. The read byte is put into buffer that DX points to. In this case its called
CHARACTER. Notice how we set up CHARACTER is an unitialized variable.

6. We conpare AXto O, which it would be if a EOF is encountered. If it is, we
end t he program

7. Oherwise we use interrupt 21h's function Print Character to print the character
in the buffer. You should be famliar with that from previ ous chapters.

8. W return to the | abel READFILE to read another byte.

9. If EOF is encountered, we use function 3Eh to close the file and terninate the
program

Creating files

To create files you have to:

1. Create an enpty file

2. Myve a buffer into the file handle
The following code will do that for us:

MAI N SEGVENT
ASSUME CS: MAI N, DS: MAI N, ES: MAI' N, SS: MAI' N

ORG 100h

START:
MOV AH, 3Ch
XOR CX, CX
MOV DX, OFFSET FI LE_NAME
I NT 21h

JC ERRORL

MOV BX, AX

MOV AH, 40h

MOV CX, 9

MOV DX, OFFSET SHI T
I NT 21h

JC ERROR

I NT 20h

MOV AH, 09h

MOV DX, OFFSET ERROR _WRI TI NG
21h

20h

MOV AH, 09h

MOV DX, OFFSET ERROR_CREATI NG
I NT 21h

I NT 20h

FI LE_NANME db "bl ow. ne", 0

SH T db "123456789"

ERROR WRITING db "error witing to file$"
ERROR _CREATING db "error creating file$"
MAI N ENDS

END START

1. W create the file using function 3Ch. Register have to be set up like this:
CX - Type of file. O - normal, 1 - Read Only, 2 - Hidden
DX - Nane of the file. Has to be an ASCIIZ string.
This function returns the file handle of the newfile in AX

2. W check for an error, and junp of necessary

3. We nove the file handle from AX into BX
4. And choose interrupt 21h's function Wite File (40h). For this function we need
the registers set up Ilike this:
BX - File Handl e
CX - File size to wite (9 in our case)
DX - Points to buffer to be witten
5. W check for an error, if so we junp, otherwise we term nate the program

Search operations

In assenbly you have two search functions at your disposal, Search First and Search
Next. CQut of those to search first is the nore conplicated one. As the nane inplies,
Search Next can only be done after a Search First function. So first thing we do to
search for a file is set up a Search First routine. The register have to be setup as
fol |l ows:

AH - 4Eh

CL - File Attributes

DX - Pointer to ASCIIZ path/file nane

The file attributes are set up in a wierd way, and | will not get into those. It's
enough for you to know that we will be using 6h, which is a normal file. Well actually
DCS will read 6h as 00000110, and each bit has a different meaning.

This function will return an error in AX. |If AXis zero the search was successful,
otherwi se we know it wasn't. If it found the files to search for, DOS will setup

a block of nenory 43 bytes long in the DTA. DTA stands for Disk Transfer Area and for
now it's enough to think of it as a "scratch pad" for DOS. In this tutorial | wll
not get into reading it, but it doesn't hurt telling you what these 43 byte contain:

0 - 21: Reserved for the Find Next function. This saves us fromhaving to do the

setup again.
21 - 22: Attributes of the file found
22 - 24: Tinme the file found was created
24 - 26: Date the file found was created
26 - 30: Size of the file found (in bytes)
30 - 43: File nane of the file found.

So our Search First function will |ook Iike this:
SEARCH

MOV DX, OFFSET FI LE_NAME

MOV CL, 6h

MOV AH, 4Eh

I NT 21h

OR AL, AL

JNZ NOT_FOUND
Noti ce how we use a bitwi se operator instead of a CMP? Bitwi se operations are insanly
fast, and CoMParing 2 values is bascily subtracting which is slower. Renmenber how OR
wor ks?

0OORO=0
10RO =1
OOR1=1
10R1=1

So OR AL,AL will only return O if every single bit in ALis 0. So if it doesn't return
0, we know that it contains an error code and the search failed. W wont bother
checking what the error code is, we just junp to a label that will display an error
message. |If the search was successful we nove on to the Search Next function to check
if anynore files nmeet our describtion. Search Next is a fairly easy function. Al we
have to do is nove 4Fh into AH and call int 21h.
FOUND:

MOV Ah, 4Fh

I NT 21h

OR AL, AL

JNZ ONE_FI LE

This code will performthe Search Next function, and if it fails junp to the | abel
ONE_FI LE. But what happens if it found another file? WIIl we could do another
Search Next function.
MORE_FOUND:

MOV AH, 4Fh

I NT 21h

OR AL, AL

JNZ MORE_FI LES_MSG
This will check if yet another file is found. Now we should inplenment a way of know ng
how many files we found. W can do so by setting a register to 1 after the Search First
function was successful, and increneant it each tine it finds another file. So lets
put all this together and create a programthat will search for a file, search again
if it found it and start a |loop that keeps searching for files and keeps track of how
many it found:

MAI N SEGVENT
ASSUME CS: MAI N, DS: MAI N, ES: MAI' N, SS: MAI' N

ORG 100h

SEARCH:
MOV DX, OFFSET FI LE_NAME
MOV CL, 6h
MOV AH, 4Eh
I NT 21h
OR AL, AL
JNZ NOT_FOUND

FOUND:
MOV CL, 1 ;the counter that keeps track of how many files we found
MOV Ah, 4Fh
I NT 21h
OR AL, AL
JNZ ONE_FI LE

MORE_FOUND:
I NC CL ;here we increnent it
MOV AH, 4Fh
I NT 21h
OR AL, AL
JNZ MORE_FI LES MSG
JMP MORE_FOUND

MORE_FI LES_MSG
MOV AH, 02h
OR CL, 30h ;convert counter to nunber (see bl ow)
MOV DL, CL ;and display it.
I NT 21h

MOV AH, 9h

MOV DX, OFFSET MORE_FI LES
I NT 21h

I NT 20h

ONE_FI LE:
MOV AH, 9h
MOV DX, OFFSET FI LE_FOUND
INT 21h
I NT 20h

NOT_FOUND:
MOV AH, 9h

MOV DX, OFFSET FI LE_NOT_FOUND
INT 21h
I NT 20h

MORE_FI LES DB " FILES FOUND', 10, 13,' $'

FI LE_NOT_FOUND DB "FI LE NOT FOUND', 10, 13,'$

FI LE_FOUND DB "1 FILE FOUND', 10, 13,"' $'

FI LE_NAMVE DB "*. AWC', 0 ;this is the file we search for

MAI N ENDS
END SEARCH

Ret ur ns:

FI LE NOT FOUND

If not files with extension . AWC are found

1 FILE FOUND

If the current directory contains 1 file with the extension . AW

X FI LES FOUND

If nmore than one file with extension . AWC was found. X stands for the nunber of
files found. Renenber how function 2h will print the ASCII value of a hex nunber?
Well we don't really want that. So to convert it to a number we OR it with 30h
That's because if you |ook at an ASCI|I chart you'll notice that the numeric val ue
of a ASCII nunber is always 30h nore than the hex nunber. For exanple, The nunber
5 is equal to 35h, 6 is 36h, etc. So to convert it we ORit with 30h

5h = 000101

30h = 000110

35h = 110101 (ASCI | Val ue: "5")
6h = 000110

30h = 110000

36h = 110110 (ASCI | Val ue: "6")

etc.

Exer ci ses:

1. Create a programthat will display how nmany files are in the current directory
2. Create a programthat will create a newfile, wite sonmething to it, close it,
open it, and read its contents.

Basi cs of Wn32

| didn't want to include this as | absolutly HATE mcrosoft, but | guess | have to face
the fact that it sadly took over all other good operating systens and peopl e have
started to switch to it. This chapter will be quite a bit different fromthe previous
ones as Wn32 programng is not really lowlevel. Basicly all you're doing is nmaking
calls to internal windows .DLL files. But the nost signicant differance is the fact
that you will be working in Protected Mode. This is the node a briefly nentioned where
you have a 4 gig limt instead of the old 64k you' ve been working with so far.

won't heavily get into what protected node is and does as that is out of the scope of
this tutorial (my next asmtutorial will though), but you will need to refer back to
.EXE file layout | tal ked about in chapter 3.

Tool s

Well first of all you will have to downl oad a new assenbler. That's because ny version
of TASMis ol der and doesn't support Wn32. So for this chapter get yourself a copy of
MASM That's an assenbl er by nicrosoft that has now become freeware. Wy didn't |
menti on MASM before since it's free? Well the only thing MASMis now good for is Wn32
program ng. TASM uses sonething called | DEAL nbde which is a nuch better way of
programing in assenbly. MASM uses MASM node which quite frankly blows. Get MASM from
<url >

Downl oad and install it, than nove on to the next section

A Message Box

First of all you have to get famliar with the program | ayout:

386

. MODEL Fl at, STDCALL

. DATA

. DATA?

. CONST

. CODE

LABEL:

END LABEL

This should look fairly famliar to you. |If it doesn't, let's go over it again:

386 - This declares the processor type to use. You can also use 4 and 586, but

for the sake of backwards conpadibility you should stick with 386 unless you
have to use sonething higher.

. MODEL FLAT, STDCALL - This declares the menmory nmodel to use. In Wn32 programyou
don't have the choices you did before anynmore, FLAT is the only
one. The STDCALL tells the assenbler how to pass paraneters.
Don't worry about what that neans just yet, you will nost
i kely never use anything buy STDCALL in Wn32 progranmm ng as
there is only 1 instruction that needs a different one (C).

.DATA - Al your initialized data should go in here

.DATA? - Al your uninitialized data should go here

.CONSTS - Constants go here

.CODE - And your code goes here

LABEL: - Just |like before, you have to define a starting | abel

END LABEL - And END it

Now | ' m gonna ask you to take a different ook at this whole assenbly thing. So far you
have been mani pul ati ng nenory and the CPU, with Wn32 you mani pul ate nmenory and W ndows
conmponents. |'msure you know what Include files are, files that will be included with
your program when you conpile it. Well in Wn32 prograning you' re using w ndows include
files in the formof DLLs. These files are known as Application Progranming |Interface
or APl for short. For exanple, Kernel32.dll, User32.dll, gdi32.dll are APIs. Again,

I won't bother getting into details on how APIs work. Assumi ng you have included all

the .DLL files you need, you call specific Wn32 functions in the follow ng format:
I NVOKE expressi on, ar gument s

So for exanple, to exit a programby nmaking a call to the exit function you do:

I N\VOKE Exit Process, 0

So let's make a programthat does just that, exits:

386

. MODEL Fl at, STDCALL

option casemap: none ;turn case sensitivity on

i ncl ude \ masnB82\i ncl ude\ wi ndows. i nc ;the include files that we need

i ncl ude \masnB2\i ncl ude\ kernel 32.i nc
includelib \masnmB2\Ili b\kernel 32.1i b
. DATA

. CODE

START:
| N\VOKE Exi t Process, 0
END START

To get an .EXE out of this, get into your MASM directory and then into BIN. Then
assenbl e with:

m /c [/coff [Cp filenane.asm

And link with:

Iink / SUBSYSTEM W NDOAS /LI BPATH: c:\masnB2\lib fil enane. obj

This will get you a file called filenane.exe, run it and ph33r.

Now |l ets nmake this into a nessage box. W use the |NVOKE conmand agai n, but instead
of using the ExitProcess function, we use MessageBox.

| N\VOKE MessageBox, 0, OFFSET MsgBoxText, OFFSET MsgBoxCaption, MB_OK

Let's disect this thing:

MessageBox tells w ndows what function we want, and add a 0, just like we did with

Exit Process. This is done because all ANSI strings in windows nust be termnated with a
0. Next we put the location of MsgBoxText in there. This is done just |ike you would
do it using INT 21h, OFFSET LOCATION. W do the sane with MsgBoxCaption and finally
speci fy what kind of nmessage box we want. 1In this case MB OK is a constant representing
the famliar box where you can only press k. Usually this would be a nunber, but we're
including a file that contains defintions of them So how did | know what goes where?
A Wn32 refrence will tell you. W also have to define MsgBoxText and MsgBoxCapti on.

We do this the way we al ways did:

MsgBoxCaption DB "ph33r billl g473z!",0

MsgBoxText DB "Yes, | ph33r",0

So throwing it all together, the code would | ook Iike this:

. 386

. MODEL FLAT, stdcall

opti on casemap: none

i ncl ude \masnB2\i ncl ude\ wi ndows. i nc
i ncl ude \masnB2\i ncl ude\ kernel 32.i nc
includelib \masnmB2\Ili b\kernel 32.1ib
i ncl ude \masnB2\i ncl ude\ user32.inc
includelib \masnmB2\lib\user32.1ib

. DATA
MsgBoxCaption DB "ph33r billl g473z!",0
MsgBoxText DB "Yes, eYe ph33r",0

. CODE

START:

| N\VOKE MessageBox, 0, OFFSET MsgBoxText, OFFSET MsgBoxCaption, MB_OK
I N\VOKE Exit Process, O

END START

NOTE: |Instead of offset you could have use ADDR ADDR does basicly the sane, but it
can handl e forward refrences and OFFSET can't. In other words, if you would have
decl ared MsgBoxCaption and MsgBoxText after you use them (I NVCKE.), using

OFFSET woul d return an error. So you should get the habbit of using ADDR
i nstead of W n32.

Now assenbl e and |ink with:

m /c [/coff [Cp filenane.asm

I'ink /SUBSYSTEM W NDOAS /LI BPATH: c:\masnB82\Iib fil enane. obj

By the way, you should have nade a .bat file by now that does this for you. If you
haven't, make a file containing the following lines and save it as whatever. bat:
@cho of f

m /c /coff /Cp %.asm

l'ink / SUBSYSTEM W NDOAS /LI BPATH: c:\masnB82\lib 9%i. obj

A W ndow

As | said, | hate Wn32 programming, so |I'mthinking of scratching this part as it's
quite a bit nore conplex than a nessage box. E-mail ne with your opinion, if enough
people think | should doit, I will. So far |I have recieved no E-rmail of any kind.
Appendi x A

Resour ces

http://awc.rejects. net
My honepage, check the sk00lingz and kO0d3 sections. Also, this is where you will find
the newest version of this and other tutorials by nyself. So check it out as sone of
the other sites that have this tutorial m ght not be updating it regularly.

http://ww.intel.com
Good sel ection of white papers on intel's CPUs

http://ww. borl and. com
Honepage of the makers of TASM

http://asnjournal.freeservers. cont
Assenbly E-Zine. Very good. Also has a fewlinks to other assenbly sites, which
than link to even nmore, which link to still nore....

http://ww. sandpi |l e. or g/
Good info on hardware programr ng

http://webster. cs. ucr. edu/ Page_asm Art of Assenbl y/ Art of Asm ht m
Very good book on assenbly, although it's MASM specific, nmost t3kn33kz apply to
TASM as wel | .

http://grail.cba. csuohi 0. edu/ ~sonbs/ asnmx86. ht m
Assenbly |inks

http://ww. cs. cnu. edu/ af s/ cs. crmu. edu/ user/ral f/ pub/ WAV
Ral ph Brown's website. He made a huge listing of interrupts, go there now

http://ww. packet st orm securi fy. coni papers. htn
Has a few links to ASMrelated shit, nostly other shit though. Kick ass site.

http://ww. crackstore.com
Has a shitload of tutorials on cracking and some on assenbly.

http://ww. coder z. net
Very good site for virus related shit. They also host tons of other good sites.
If you're into or planning on making viruses, check em out.

htt://code. box. sk
Don't have too nuch on assenbly, but sone is better than nothing. Geat site for
ot her programm ng rel ated resources though.

http://sennaspy. 8m conl
Nice site with some cool source code on it. Including DOS 6.22, Quake 1/2/3, and
various versions of the Award BI CS.

http://ww. f ast sof t war e. cont i ndex. ht m
Has some cool stuff, but is MASM specific. Still worth checki ng out though

http://ww. i ce-di gga. conl progr anm ng/
A fewtutorials, mainly on nmultinedia. Including SoundBl aster programm ng and
2D/ 3D graphi cs

http://ww. text-files.org/

Kick ass site by RedPriest from #HackPhreak and Condemmed. Stilll under construction
but already has thousands of text files on everything conputer. |'ll be uploading
all ny assenbly resources there as well. ph33r it!

http://ww. coderz. net/ 29a/ 29a- home. ht m
One of the great sites hosted by Coderz.net. 29A is a virus coding group, and their
E-Zine is one of the best around, not just for virus witers. To give you a hint,
i ssue 8 consists of 8 negs of tutorials.

htt p: // www. mandr agOr e. net/
Great guy who has helped ne alot. His site has lots of source code on everything from
viruses in Linux and DOS to various exploits, all done in pure assenbly.

http://bobrich.lexitech.con
More assenbly shit.

http://ww. x86. or g/
Great hardware site. Has lots of shit on undocunented x86 shit, and even CPU exploits

htt p: // ww. progr ammer sheaven. conl
Also a nice site. Their assenbly section has lots of tutorials, sanple source code,
and libraries.

Appendi x B:
Credits, Contact information, Oher shit

First and forenmost | would like to thank all assenbly progranmers out there who have
hel ped people like me by sharing what they have di scovered in form of books, text

files, and sanple source code

Speci al thanks to:

cozgedal - For his occasional "kick ass"

rpc - For always helping ne with shit, ph33r him
zcyl - See previous

#unhol y - It just Ownz

Peopl e who have "beta tested" this thing:
sni der
cozgedal

O her cool people who have helped me with various things (sonme without knowing it):
skin_dot, noJoe, lindex, RedPriest

Contact information

E-Mai |l : fu@kz.org

Website: http://awc.rejects. net

I CQ . 42439352

| RC :irc.ckz.org in #Security/#Unhol y/ #Conput ers
O her shit

If you find a m stake (technical, speling, etc) contact nme asap

I need feedback! |If you have comments please direct themto the e-mail address above.
Constructive negative comments are wel conme, but if you just wanna bitch to ne try
e-mailing root @ crosoft.cominstead. After all, that's what mcrosoft is there for
If you made use of this tutorial, please contact ne as well. | wanna see what people

have done with this.
If you plan to nmake commercial use of this tutorial (yeah right), contact nme.

If you fuck up your conputer as a result of this tutorial, don't blane me. All code
has been tested and works great, but | cannot be held responsible for anything that
happens to you as a result of using this information

You nmay freely distribute this text as long as you don't change anything. |If there's
sonet hing you think should be changed, contact nme first.

And finally, I'malready working on the sequel to this tutorial. If you didn't get
enough of assenbly, check it out. Mght take a while to get done though. It wll cover
shit like:

Mul ti-di mensional Arrays

Structures

Code optim zation

Macr os

Procedures and functions

Readi ng and Witing directly to sectors

Protected Mode

Mul ti-Tasking in DOS (well ki nda)

OOP (nject Oientated Paradi gm

Sorme final words

The key to mastering assenbly is LOTS of practise! Don't worry if you don't understand
hal f of the stuff | tal ked about here. Put this thing aside and just nmake lots and lots
of little prograns. |If they don't work, debug them even if that takes you all night or
| onger. Than cone back to this. And don't bother trying to find help. There are only

very few peopl e who know assenbly, and if you can figure it out yourself you learn nore.
By the way, 4 nonths after | first opened up a text file on assenbly ny tasmdirectory
contains 93 working .asmfiles coded by nyself. On average that's alnpbst 1 program

a day. Renenber, you don't have to start coding sonething big, as |ong as you code
somet hi ng!

Don't expect to learn everything in this tutorial within a few days, | would say that

if you can do it in 4 nonths or so you are doing great.

Quote of the nonth:
The only good is know edge and the only evil ignorance.
- Socrates

EOF

	blacksun.box.sk
	http://blacksun.box.sk/asm.txt

