
C. jacobnbndf

Calculates the Jacobian matrix of an n-dimensional function of n variables, if this
Jacobian is known to be a band matrix and have to be stored rowwise in a one-dimensional
array, jacobnbndf computes first order difference quotient approximations

J l j = &(xl ,... ,X , -~ ,X,+~~,X~+~ ,..., x,J-~@~ ,..., xji ,X,,X,+~ ,..., xn))/6i
for i = l ,... n; max(1,i-lw)ljlmin(n,i+rw) to the partial derivatives Ji, = aA(x)/axj of the
components of the function f(x) (fxeRn).

Function Parameters:

n:

lw:

rw:

x:

f:

jac:

di:

void j acobnbndf (n, lw, rw,x,Jjac, di, funct)
int;
entry: the number of independent variables and the dimension of the function;
int;
entry: the number of codiagonals to the left of the main diagonal of the Jacobian

matrix, which is known to be a band matrix;
int;
entry: the number of codiagonals to the right of the main diagonal of the Jacobian

matrix;
float x[l :n];
entry: the point at which the Jacobian has to be calculated;
float f[l:n];
entry: the values of the function components at the point given in array x;

float jac[l: (lw+rw) *(n-1) +n];
exit: the Jacobian matrix in such a way that the (ij)-th element of the Jacobian, i.e.

the partial derivative of f[i] to xfi] is given in jac[(lw+rw)*(i-l)+j], i=l, ..., n,
j=max(l ,i-lw),...,min(n,i+rw);

float (*di)(i), int i;
entry: the partial derivatives to x[i] are approximated with forward differences, using

an increment to the i-th variable that equals the value of di, i=l, ..., n;
funct: void (*funct)(n,l, u,x,fi;

entry: the meaning of the parameters of the function funct is as follows:
n: the number of function components;
1,u: int; the lower and upper bound of the function component subscript;
x: the independent variables are given in x[l:n];
f: after a call of funct the function components f[i], i=l, ..., u, should be given in

f[l:u].

void jacobnbndf(int n, int lw, int rw, float x [] , float f[l,
float jac[l, float (*di) (int),
int (*funct) (int, int, int, float [I , float [I)

{
float *allocate-real-vector(int, int);
void f ree-real-vector (float *, int) ;
int i,j,k,l,u,t,b,ll;
float aid, stepi, *fl;

1=1;
u=lw+1;
t=rw+l;
b=lw+rw;
for (i=l; ic=n; i++) {

11=1;

Copyright 1995 by CRC Press, Inc

fl=allocate-real-vector(l1,u);
stepi= (*di) (i) ;
aid=x [il ;
x [i] =aid+stepi ;
(*funct) (n, l,u,x, £1) ;
x [il =aid;
k = i+((i <= t) ? 0 : i-t)*b;
for (j=l; j<=u; j++) {

jac[kl=(fl[jl -f [jl)/stepi;
k += b;

\
J

if (i >= t) 1++;
if (U c n) u++;
free-real-vector (f 1,ll) ;

Copyright 1995 by CRC Press, Inc

